
Dietmar J J Manstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7546008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Frameshift mutation S368fs in the gene encoding cytoskeletal β-actin leads to ACTB-associated syndromic thrombocytopenia by impairing actin dynamics. European Journal of Cell Biology, 2022, 101, 151216.	1.6	7
2	Distinct actin–tropomyosin cofilament populations drive the functional diversification of cytoskeletal myosin motor complexes. IScience, 2022, 25, 104484.	1.9	13
3	Mechanochemical properties of human myosin-1C are modulated by isoform-specific differences in the N-terminal extension. Journal of Biological Chemistry, 2021, 296, 100128.	1.6	3
4	Muscle myosin performance measured with a synthetic nanomachine reveals a classâ€specific Ca 2+ â€sensitivity of the frog myosin II isoform. Journal of Physiology, 2021, 599, 1815-1831.	1.3	3
5	Allosteric modulation of cardiac myosin mechanics and kinetics by the conjugated omegaâ€7,9 transâ€fat rumenic acid. Journal of Physiology, 2021, 599, 3639-3661.	1.3	1
6	Structural and Biochemical Characterization of a Dye-Decolorizing Peroxidase from Dictyostelium discoideum. International Journal of Molecular Sciences, 2021, 22, 6265.	1.8	11
7	Improvement of image resolution by combining enhanced confocal microscopy and quantum dot triexciton imaging. FEBS Open Bio, 2021, 11, 3324-3330.	1.0	2
8	CORE-MD II: A fast, adaptive, and accurate enhanced sampling method. Journal of Chemical Physics, 2021, 155, 104114.	1.2	2
9	Assessment of the Contribution of a Thermodynamic and Mechanical Destabilization of Myosin-Binding Protein C Domain C2 to the Pathomechanism of Hypertrophic Cardiomyopathy-Causing Double Mutation MYBPC3Δ25bp/D389V. International Journal of Molecular Sciences, 2021, 22, 11949.	1.8	2
10	Actin–tropomyosin distribution in non-muscle cells. Journal of Muscle Research and Cell Motility, 2020, 41, 11-22.	0.9	23
11	Myosin-18B Regulates Higher-Order Organization of the Cardiac Sarcomere through Thin Filament Cross-Linking and Thick Filament Dynamics. Cell Reports, 2020, 32, 108090.	2.9	8
12	Undefeated—Changing the phenamacril scaffold is not enough to beat resistant Fusarium. PLoS ONE, 2020, 15, e0235568.	1.1	1
13	Small Molecule Effectors of Myosin Function. Advances in Experimental Medicine and Biology, 2020, 1239, 61-84.	0.8	9
14	Undefeated—Changing the phenamacril scaffold is not enough to beat resistant Fusarium. , 2020, 15, e0235568.		0
15	Undefeated—Changing the phenamacril scaffold is not enough to beat resistant Fusarium. , 2020, 15, e0235568.		0
16	Undefeated—Changing the phenamacril scaffold is not enough to beat resistant Fusarium. , 2020, 15, e0235568.		0
17	Undefeated—Changing the phenamacril scaffold is not enough to beat resistant Fusarium. , 2020, 15, e0235568.		0
18	Undefeated—Changing the phenamacril scaffold is not enough to beat resistant Fusarium. , 2020, 15, 20235568		0

e0235568.

#	Article	IF	CITATIONS
19	Undefeated—Changing the phenamacril scaffold is not enough to beat resistant Fusarium. , 2020, 15, e0235568.		0
20	Unique structure and function of viral rhodopsins. Nature Communications, 2019, 10, 4939.	5.8	59
21	Phenamacril is a reversible and noncompetitive inhibitor of Fusarium class I myosin. Journal of Biological Chemistry, 2019, 294, 1328-1337.	1.6	21
22	Treatments targeting inotropy. European Heart Journal, 2019, 40, 3626-3644.	1.0	123
23	Three mammalian tropomyosin isoforms have different regulatory effects on nonmuscle myosin-2B and filamentous β-actin in vitro. Journal of Biological Chemistry, 2018, 293, 863-875.	1.6	40
24	Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia. Nature Communications, 2018, 9, 4250.	5.8	38
25	Co-polymers of Actin and Tropomyosin Account for a Major Fraction of the Human Actin Cytoskeleton. Current Biology, 2018, 28, 2331-2337.e5.	1.8	47
26	Tropomyosin Isoforms Specify Functionally Distinct Actin Filament Populations InÂVitro. Current Biology, 2017, 27, 705-713.	1.8	127
27	N-terminal splicing extensions of the human MYO1C gene fine-tune the kinetics of the three full-length myosin IC isoforms. Journal of Biological Chemistry, 2017, 292, 17804-17818.	1.6	14
28	Inward H ⁺ pump xenorhodopsin: Mechanism and alternative optogenetic approach. Science Advances, 2017, 3, e1603187.	4.7	93
29	Pink-beam serial crystallography. Nature Communications, 2017, 8, 1281.	5.8	101
30	Structural and biochemical studies of sulphotransferase 18 from Arabidopsis thaliana explain its substrate specificity and reaction mechanism. Scientific Reports, 2017, 7, 4160.	1.6	18
31	Mechanistic insights into the active site and allosteric communication pathways in human nonmuscle myosin-2C. ELife, 2017, 6, .	2.8	22
32	Low-background pink-beam serial crystallography. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, a405-a405.	0.0	0
33	Load-dependent modulation of non-muscle myosin-2A function by tropomyosin 4.2. Scientific Reports, 2016, 6, 20554.	1.6	56
34	Arachidonic Acid Directly Binds and Activates Beta-Cardiac Myosin in the Regulated Cardiac Actomyosin Complex. Biophysical Journal, 2016, 110, 614a.	0.2	0
35	Tropomyosinâ€Mediated Regulation of Cytoplasmic Myosins. Traffic, 2016, 17, 872-877.	1.3	35
36	Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution. Nature, 2016, 534, 724-728.	13.7	212

#	Article	IF	CITATIONS
37	Structure of the F-Actin-Tropomyosin Complex Revealed by Electron Cryomicroscopy. Biophysical Journal, 2016, 110, 156a.	0.2	1
38	The Activation Mechanism of 2′-5′-Oligoadenylate Synthetase Gives New Insights Into OAS/cGAS Triggers of Innate Immunity. Structure, 2015, 23, 851-862.	1.6	61
39	Crystal structure of the dynamin tetramer. Nature, 2015, 525, 404-408.	13.7	115
40	Structure of the F-actin–tropomyosin complex. Nature, 2015, 519, 114-117.	13.7	321
41	Loss of functional MYO1C/myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion. Autophagy, 2014, 10, 2310-2323.	4.3	63
42	Crystal structure of the rigorâ€like human nonâ€muscle myosinâ€2 motor domain. FEBS Letters, 2014, 588, 4754-4760.	1.3	18
43	Crystal Structure of Human Myosin 1c—The Motor in GLUT4 Exocytosis: Implications for Ca2+ Regulation and 14-3-3 Binding. Journal of Molecular Biology, 2014, 426, 2070-2081.	2.0	49
44	Silver(I) atalyzed Route to Pyrroles: Synthesis of Halogenated Pseudilins as Allosteric Inhibitors for Myosin ATPase and Xâ€ray Crystal Structures of the Protein–Inhibitor Complexes. European Journal of Organic Chemistry, 2014, 2014, 4487-4505.	1.2	18
45	Molecular mechanisms of diseaseâ€related human βâ€actin mutations p.R183W and p.E364K. FEBS Journal, 2014, 281, 5279-5291.	2.2	37
46	Expression, purification and crystallization of a dye-decolourizing peroxidase from <i>Dictyostelium discoideum</i> . Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 252-255.	0.4	4
47	Functional Characterization of Disease-Related Human Î ² -Actin Mutants. Biophysical Journal, 2014, 106, 570a.	0.2	0
48	Human Myosin-18B - A Versatile Actin Binding Protein. Biophysical Journal, 2014, 106, 179a-180a.	0.2	1
49	Structural and Functional Characterization of Nonmuscle Myosin-2B in the Presence of Regulated Actin Filaments. Biophysical Journal, 2014, 106, 570a-571a.	0.2	0
50	Structural Basis of Myosin 1C Ca2+ Regulation. Biophysical Journal, 2014, 106, 180a.	0.2	0
51	Small molecule-mediated refolding and activation of myosin motor function. ELife, 2014, 3, e01603.	2.8	47
52	Nonmuscle myosin-2: mix and match. Cellular and Molecular Life Sciences, 2013, 70, 1-21.	2.4	197
53	Functional Characterization of Human Myosin-18A and Its Interaction with F-actin and GOLPH3. Journal of Biological Chemistry, 2013, 288, 30029-30041.	1.6	52
54	Myosin Structure, Allostery, and Mechano-Chemistry. Structure, 2013, 21, 1911-1922.	1.6	56

#	Article	IF	CITATIONS
55	Kinetic and Thermodynamic Analysis of the Light-induced Processes in Plant and Cyanobacterial Phytochromes. Biophysical Journal, 2013, 105, 2210-2220.	0.2	11
56	Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML. Blood, 2013, 122, 2877-2887.	0.6	186
57	Functional Dissection of the Dictyostelium discoideum Dynamin B Mitochondrial Targeting Sequence. PLoS ONE, 2013, 8, e56975.	1.1	3
58	Expression, purification, crystallization and preliminary X-ray crystallographic analysis of human myosin 1c in complex with calmodulin. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1020-1022.	0.7	5
59	Distinct Functional Interactions between Actin Isoforms and Nonsarcomeric Myosins. PLoS ONE, 2013, 8, e70636.	1.1	74
60	Kinetic properties and smallâ€molecule inhibition of human myosinâ€6. FEBS Letters, 2012, 586, 3208-3214.	1.3	43
61	Structure of the Rigor Actin-Tropomyosin-Myosin Complex. Cell, 2012, 150, 327-338.	13.5	297
62	4.8 Myosin Motors: Structural Aspects and Functionality. , 2012, , 118-150.		6
63	Subnanometer Structure of the Actin/Myosin/Tropomyosin Complex. Biophysical Journal, 2012, 102, 16a.	0.2	0
64	EMD57033 Acts as a Pharmacological Chaperone Stabilizing and Activating Myosin Motor Activity. Biophysical Journal, 2012, 102, 354a.	0.2	2
65	Functional Characterization of Human Myosin-18A and its Interaction Partners. Biophysical Journal, 2012, 102, 570a.	0.2	0
66	Functional characterization of the human α-cardiac actin mutations Y166C and M305L involved in hypertrophic cardiomyopathy. Cellular and Molecular Life Sciences, 2012, 69, 3457-3479.	2.4	52
67	Functional characterization of the human myosin-7a motor domain. Cellular and Molecular Life Sciences, 2012, 69, 299-311.	2.4	32
68	A New Approach for the Identification of Allosteric Binding Sites in Proteins. FASEB Journal, 2012, 26, 964.6.	0.2	1
69	Functional characterization of mitofusinâ€like protein from Dictyostelium discoideum. FASEB Journal, 2012, 26, lb205.	0.2	0
70	Mutated IDH1 Has 2-Hydroxyglutarate-Independent Functions in Leukemogenesis. Blood, 2012, 120, 770-770.	0.6	0
71	Inhibition of Myosin ATPase Activity by Halogenated Pseudilins: A Structure–Activity Study. Journal of Medicinal Chemistry, 2011, 54, 3675-3685.	2.9	39
72	Acute-Phase Protein α1-Antitrypsin Inhibits Neutrophil Calpain I and Induces Random Migration. Molecular Medicine, 2011, 17, 865-874.	1.9	54

#	Article	IF	CITATIONS
73	Unusual Anchor of a Motor Complex (MyoD–MLC2) to the Plasma Membrane of <i>Toxoplasma gondii</i> . Traffic, 2011, 12, 287-300.	1.3	31
74	Phalloidin perturbs the interaction of human non-muscle myosin isoforms 2A and 2C1 with F-actin. FEBS Letters, 2011, 585, 767-771.	1.3	17
75	Spotlight on… Dietmar Manstein. FEBS Letters, 2011, 585, 2401-2402.	1.3	0
76	Dictyostelium dynamin B modulates cytoskeletal structures and membranous organelles. Cellular and Molecular Life Sciences, 2011, 68, 2751-2767.	2.4	20
77	Site-directed mutagenesis of the χ subunit of DNA polymerase III and single-stranded DNA-binding protein of E. coli reveals key residues for their interaction. Nucleic Acids Research, 2011, 39, 1398-1407.	6.5	26
78	Mechanism and Specificity of Pentachloropseudilin-mediated Inhibition of Myosin Motor Activity. Journal of Biological Chemistry, 2011, 286, 29700-29708.	1.6	56
79	Comparative Kinetic and Functional Characterization of the Motor Domains of Human Nonmuscle Myosin-2C Isoforms. Journal of Biological Chemistry, 2011, 286, 21191-21202.	1.6	51
80	Structural Basis for the Allosteric Interference of Myosin Function by Reactive Thiol Region Mutations G680A and G680V. Journal of Biological Chemistry, 2011, 286, 35051-35060.	1.6	15
81	Targeted Optimization of a Protein Nanomachine for Operation in Biohybrid Devices. Angewandte Chemie - International Edition, 2010, 49, 312-316.	7.2	19
82	Total synthesis of biologically active alkaloids using transition metals. Pure and Applied Chemistry, 2010, 82, 1975-1991.	0.9	32
83	Targeted Optimization of a Molecular Motor for Controlling Movement in Biohybrid Devices. Biophysical Journal, 2010, 98, 606a.	0.2	0
84	Switch-2 Dependent Modulation of the Myosin Power Stroke. Biophysical Journal, 2010, 98, 143a-144a.	0.2	0
85	Membrane Remodeling Induced by the Dynamin-Related Protein Drp1 Stimulates Bax Oligomerization. Cell, 2010, 142, 889-901.	13.5	360
86	The Ras Pathway Modulator Melophlinâ€A Targets Dynamins. Angewandte Chemie - International Edition, 2009, 48, 7240-7245.	7.2	24
87	Total Synthesis of Pentabromo―and Pentachloropseudilin, and Synthetic Analogues—Allosteric Inhibitors of Myosin ATPase. Angewandte Chemie - International Edition, 2009, 48, 8042-8046.	7.2	78
88	The mechanism of pentabromopseudilin inhibition of myosin motor activity. Nature Structural and Molecular Biology, 2009, 16, 80-88.	3.6	69
89	Structure-Function Studies of Myosin Motor Domains. Biophysical Journal, 2009, 96, 553a-554a.	0.2	0
90	The structural and mechanistic basis of allosteric modulation of myosin motor activity by pharmacological agents. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s20-s20.	0.3	0

#	Article	IF	CITATIONS
91	Crystal Structure of the Intact Archaeal Translation Initiation Factor 2 Demonstrates Very High Conformational Flexibility in the α- and β-Subunits. Journal of Molecular Biology, 2008, 382, 680-691.	2.0	53
92	Dictyostelium Myosin-5b Is a Conditional Processive Motor. Journal of Biological Chemistry, 2008, 283, 26902-26910.	1.6	30
93	Mechanism, Regulation, and Functional Properties of Dictyostelium Myosin-1B. Journal of Biological Chemistry, 2008, 283, 4520-4527.	1.6	20
94	Enzymatic Activity and Motility of Recombinant Arabidopsis Myosin XI, MYA1. Plant and Cell Physiology, 2007, 48, 886-891.	1.5	26
95	New Insights into the Interactions of the Translation Initiation Factor 2 from Archaea with Guanine Nucleotides and Initiator tRNA. Journal of Molecular Biology, 2007, 373, 328-336.	2.0	29
96	3D structure of Thermus aquaticus single-stranded DNA-binding protein gives insight into the functioning of SSB proteins. Nucleic Acids Research, 2006, 34, 6708-6717.	6.5	32
97	Functional Characterization of the N-terminal Region of Myosin-2. Journal of Biological Chemistry, 2006, 281, 36102-36109.	1.6	32
98	Dictyostelium myosin-IE is a fast molecular motor involved in phagocytosis. Journal of Cell Science, 2006, 119, 550-558.	1.2	46
99	Molecular mechanism of actomyosin-based motility. Cellular and Molecular Life Sciences, 2005, 62, 1462-1477.	2.4	87
100	Crystal structure of the GTPase domain of rat dynamin 1. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13093-13098.	3.3	67
101	Changes in Mg2+ Ion Concentration and Heavy Chain Phosphorylation Regulate the Motor Activity of a Class I Myosin. Journal of Biological Chemistry, 2005, 280, 6064-6071.	1.6	49
102	Molecular engineering of myosin. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1907-1912.	1.8	15
103	Molecular engineering of a backwards-moving myosin motor. Nature, 2004, 427, 558-561.	13.7	116
104	Conformational changes in actin–myosin isoforms probed by Ni(II)·Gly–Gly–His reactivity. Journal of Muscle Research and Cell Motility, 2004, 25, 527-537.	0.9	4
105	Seeing More by Seeing Less: TIRFM Imaging of Cytoskeleton and Membrane Dynamics. Microscopy and Microanalysis, 2004, 10, 1232-1233.	0.2	0
106	Analysis of post-translational modification and characterization of the domain structure of dynamin A fromDictyostelium discoideum. Journal of Mass Spectrometry, 2003, 38, 277-282.	0.7	7
107	A structural model for actin-induced nucleotide release in myosin. Nature Structural and Molecular Biology, 2003, 10, 826-830.	3.6	159
108	Interaction of Myosin Subfragment 1 with Forms of Monomeric Actinâ€. Biochemistry, 2003, 42, 3060-3069.	1.2	3

#	Article	IF	CITATIONS
109	Recombinant motor domain constructs of Chara corallina myosin display fast motility and high ATPase activity. Biochemical and Biophysical Research Communications, 2003, 312, 958-964.	1.0	51
110	Nanometer targeting of microtubules to focal adhesions. Journal of Cell Biology, 2003, 161, 853-859.	2.3	149
111	PEVK Domain of Titin: An Entropic Spring with Actin-Binding Properties. Journal of Structural Biology, 2002, 137, 194-205.	1.3	179
112	Expression vectors for studying cytoskeletal proteins in Dictyostelium discoideum. Journal of Muscle Research and Cell Motility, 2002, 23, 605-611.	0.9	32
113	Mutations in the relay loop region result in dominantâ€negative inhibition of myosin II function in Dictyostelium. EMBO Reports, 2002, 3, 1099-1105.	2.0	47
114	Mutations in the relay loop region result in dominantâ€negative inhibition of myosin II function in Dictyostelium. EMBO Reports, 2002, 3, 1228-1228.	2.0	1
115	Crystal structure of the motor domain of a class-I myosin. EMBO Journal, 2002, 21, 2517-2525.	3.5	94
116	The dynamin A ring complex: molecular organization and nucleotide-dependent conformational changes. EMBO Journal, 2002, 21, 240-250.	3.5	43
117	Toxoplasma gondii myosin A and its light chain: a fast, single-headed, plus-end-directed motor. EMBO Journal, 2002, 21, 2149-2158.	3.5	225
118	Structure of a genetically engineered molecular motor. EMBO Journal, 2001, 20, 40-46.	3.5	58
119	Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO Journal, 2001, 20, 5813-5821.	3.5	102
120	The Dictyostelium Bcr/Abr-related protein DRG regulates both Rac- and Rab-dependent pathways. EMBO Journal, 2001, 20, 1620-1629.	3.5	26
121	Single-molecule tracking of myosins with genetically engineered amplifier domains. Nature Structural Biology, 2001, 8, 226-229.	9.7	113
122	Lighting up the cell surface with evanescent wave microscopy. Trends in Cell Biology, 2001, 11, 298-303.	3.6	273
123	Interaction Between PEVK-Titin and Actin Filaments. Circulation Research, 2001, 89, 874-881.	2.0	150
124	Charge Changes in Loop 2 Affect the Thermal Unfolding of the Myosin Motor Domain Bound to F-Actinâ€. Biochemistry, 2000, 39, 4527-4532.	1.2	31
125	Stabilization of the Actomyosin Complex by Negative Charges on Myosinâ€. Biochemistry, 2000, 39, 11602-11608.	1.2	35
126	Disruption of a Dynamin Homologue Affects Endocytosis, Organelle Morphology, and Cytokinesis in <i>Dictyostelium discoideum</i> . Molecular Biology of the Cell, 1999, 10, 225-243.	0.9	105

#	Article	IF	CITATIONS
127	Functional Characterisation of Dictyostelium Myosin II with Conserved Tryptophanyl Residue 501 Mutated to Tyrosine. Biological Chemistry, 1999, 380, 1017-1023.	1.2	38
128	Disturbed Communication between Actin- and Nucleotide-binding Sites in a Myosin II with Truncated 50/20-kDa Junction. Journal of Biological Chemistry, 1999, 274, 20133-20138.	1.6	34
129	Differences in the ionic interaction of actin with the motor domains of nonmuscle and muscle myosin II. FEBS Journal, 1999, 260, 672-683.	0.2	19
130	Functional Characterization of the Secondary Actin Binding Site of Myosin IIâ€. Biochemistry, 1999, 38, 15078-15085.	1.2	29
131	Kinetic Analysis ofDictyostelium discoideumMyosin Motor Domains with Glycine-to-Alanine Mutations in the Reactive Thiol Regionâ€. Biochemistry, 1999, 38, 6126-6134.	1.2	58
132	Role of the salt-bridge between switch-1 and switch-2 of Dictyostelium myosin 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 1999, 290, 797-809.	2.0	83
133	Differential scanning calorimetric study of the thermal unfolding of the motor domain fragments of Dictyostelium discoideum myosin II. FEBS Journal, 1998, 251, 275-280.	0.2	18
134	Kinetic Characterization of Myosin Head Fragments with Long-Lived Myosin·ATP Statesâ€. Biochemistry, 1998, 37, 9679-9687.	1.2	29
135	Modulation of Actin Affinity and Actomyosin Adenosine Triphosphatase by Charge Changes in the Myosin Motor Domainâ€. Biochemistry, 1998, 37, 6317-6326.	1.2	171
136	Dictyostelium discoideum Myosin II:  Characterization of Functional Myosin Motor Fragments. Biochemistry, 1997, 36, 317-323.	1.2	79
137	Overexpression of myosin motor domains in Dictyostelium: screening of transformants and purification of the affinity tagged protein. Journal of Muscle Research and Cell Motility, 1995, 16, 325-332.	0.9	73
138	Cloning vectors for the production of proteins in Dictyostelium discoideum. Gene, 1995, 162, 129-134.	1.0	202
139	Kinetic characterization of the catalytic domain of Dictyostelium discoideum myosin. Biochemistry, 1995, 34, 16056-16064.	1.2	38
140	Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature, 1993, 364, 171-174.	13.7	311
141	Kinetic characterization of a cytoplasmic myosin motor domain expressed in Dictyostelium discoideum Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 8619-8623.	3.3	103
142	[27] Molecular genetic tools for study of the cytoskeleton in Dictyostelium. Methods in Enzymology, 1991, 196, 319-334.	0.4	73
143	Complementation of myosin null mutants in Dictyostelium discoideum by direct functional selection. Developmental Biology, 1990, 137, 359-367.	0.9	45
144	Expression and characterization of a functional myosin head fragment in Dictyostelium discoideum. Science, 1989, 246, 656-658.	6.0	84

#	Article	IF	CITATIONS
145	Stereochemistry and accessibility of prosthetic groups in flavoproteins. Biochemistry, 1988, 27, 2300-2305.	1.2	36
146	Absolute stereochemistry of flavins in enzyme-catalyzed reactions. Biochemistry, 1986, 25, 6807-6816.	1.2	98
147	Ultrastructure of native lipoprotein from Escherichia coli envelopes. Journal of Molecular Biology, 1986, 189, 701-707.	2.0	3