Helena Helmby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7545392/publications.pdf

Version: 2024-02-01

44 papers

4,187

236612 25 h-index 243296 44 g-index

44 all docs

44 docs citations

44 times ranked 5058 citing authors

#	Article	IF	Citations
1	Granuloma formation and tissue pathology in <i>Schistosoma japonicum</i> versus <i>Schistosoma mansoni</i> infections. Parasite Immunology, 2021, 43, e12778.	0.7	28
2	Parasites and tissue microenvironment. Parasite Immunology, 2021, 43, e12810.	0.7	1
3	Cervicovaginal Immune Activation in Zambian Women With Female Genital Schistosomiasis. Frontiers in Immunology, 2021, 12, 620657.	2.2	12
4	The discovery of a novel series of compounds with single-dose efficacy against juvenile and adult Schistosoma species. PLoS Neglected Tropical Diseases, 2021, 15, e0009490.	1.3	11
5	Schistosoma japonicum SjE16.7 Protein Promotes Tumor Development via the Receptor for Advanced Glycation End Products (RAGE). Frontiers in Immunology, 2020, 11, 1767.	2.2	11
6	T-Bet Controls Cellularity of Intestinal Group 3 Innate Lymphoid Cells. Frontiers in Immunology, 2020, 11, 623324.	2.2	15
7	A Subset of CCL25-Induced Gut-Homing T Cells Affects Intestinal Immunity to Infection and Cancer. Frontiers in Immunology, 2019, 10, 271.	2.2	18
8	Epithelial-Cell-Derived Phospholipase A 2 Group 1B Is an Endogenous Anthelmintic. Cell Host and Microbe, 2017, 22, 484-493.e5.	5.1	41
9	Chronic Gastrointestinal Nematode Infection Mutes Immune Responses to Mycobacterial Infection Distal to the Gut. Journal of Immunology, 2016, 196, 2262-2271.	0.4	22
10	Human helminth therapy to treat inflammatory disorders- where do we stand?. BMC Immunology, 2015, 16, 12.	0.9	134
11	IL-22 Mediates Goblet Cell Hyperplasia and Worm Expulsion in Intestinal Helminth Infection. PLoS Pathogens, 2013, 9, e1003698.	2.1	120
12	IL-9–mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. Journal of Experimental Medicine, 2013, 210, 2951-2965.	4.2	340
13	An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nature Immunology, 2011, 12, 1071-1077.	7.0	436
14	Neuropathogenesis of human and murine malaria. Trends in Parasitology, 2010, 26, 277-278.	1.5	71
15	Association of Schistosomiasis with False-Positive HIV Test Results in an African Adolescent Population. Journal of Clinical Microbiology, 2010, 48, 1570-1577.	1.8	58
16	Gastrointestinal Nematode Infection Exacerbates Malaria-Induced Liver Pathology. Journal of Immunology, 2009, 182, 5663-5671.	0.4	36
17	Helminths and our immune system: Friend or foe?. Parasitology International, 2009, 58, 121-127.	0.6	29
18	Concurrent gastro-intestinal nematode infection does not alter the development of experimental cerebral malaria. Microbes and Infection, 2008, 10, 916-921.	1.0	21

#	Article	IF	Citations
19	Transforming growth factor-1² 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9–producing subset. Nature Immunology, 2008, 9, 1341-1346.	7.0	1,041
20	IgE elevation and IgE anti-malarial antibodies in Plasmodium falciparum malaria; association of high IgE levels with cerebral malaria. Clinical and Experimental Immunology, 2008, 97, 284-292.	1.1	113
21	Chronic Intestinal Nematode Infection Exacerbates Experimental <i>Schistosoma mansoni </i> Infection. Infection and Immunity, 2008, 76, 5802-5809.	1.0	18
22	Lack of galectin-3 involvement in murine intestinal nematode and schistosome infection. Parasite Immunology, 2007, 29, 93-100.	0.7	14
23	Schistosomiasis and malaria: another piece of the crossreactivity puzzle. Trends in Parasitology, 2007, 23, 88-90.	1.5	12
24	Immune modulation by helminth infections. Parasite Immunology, 2006, 28, 479-481.	0.7	7
25	Immunity to gastrointestinal nematodes: a story of immune modulation. Expert Review of Clinical Immunology, 2005, 1, 475-482.	1.3	2
26	Interleukin 1 plays a major role in the development of Th2-mediated immunity. European Journal of Immunology, 2004, 34, 3674-3681.	1.6	57
27	Contrasting roles for IL-10 in protective immunity to different life cycle stages of intestinal nematode parasites. European Journal of Immunology, 2003, 33, 2382-2390.	1.6	81
28	Essential role for TLR4 and MyD88 in the development of chronic intestinal nematode infection. European Journal of Immunology, 2003, 33, 2974-2979.	1.6	80
29	IFN- \hat{I}^3 -Independent Effects of IL-12 During Intestinal Nematode Infection. Journal of Immunology, 2003, 171, 3691-3696.	0.4	51
30	IL-18 Regulates Intestinal Mastocytosis and Th2 Cytokine Production Independently of IFN- \hat{I}^3 During Trichinella spiralis Infection. Journal of Immunology, 2002, 169, 2553-2560.	0.4	84
31	Interleukin (II)-18 Promotes the Development of Chronic Gastrointestinal Helminth Infection by Downregulating IL-13. Journal of Experimental Medicine, 2001, 194, 355-364.	4.2	92
32	MMCP-8, the first lineage-specific differentiation marker for mouse basophils. Elevated numbers of potent IL-4-producing and MMCP-8-positive cells in spleens of malaria-infected mice. European Journal of Immunology, 2000, 30, 2660-2668.	1.6	76
33	Differential immunoglobulin E and cytokine responses in BALB/c and C57Bl/6 mice during repeated infections with blood-stage Plasmodium chabaudi malaria. Parasite Immunology, 2000, 22, 185-190.	0.7	9
34	Cellular Changes and Apoptosis in the Spleens and Peripheral Blood of Mice Infected with Blood-Stage Plasmodium chabaudi chabaudi AS. Infection and Immunity, 2000, 68, 1485-1490.	1.0	109
35	Expansion of IL-3-responsive IL-4-producing non-B non-T cells correlates with anemia and IL-3 production in mice infected with blood-stagePlasmodium chabaudi malaria. European Journal of Immunology, 1998, 28, 2559-2570.	1.6	20
36	Altered Immune Responses in Mice with Concomitant <i>Schistosoma mansoni</i> location and Immunity, 1998, 66, 5167-5174.	1.0	104

#	Article	IF	CITATIONS
37	Plasmodium falciparum: The Immune Response in Rabbits to the Clustered Asparagine-Rich Protein (CARP) after Immunization in Freund′s Adjuvant or Immunostimulating Complexes (ISCOMS). Experimental Parasitology, 1993, 76, 134-145.	0.5	15
38	Rosetting Plasmodium falciparum-infected erythrocytes express unique strain-specific antigens on their surface. Infection and Immunity, 1993, 61, 284-288.	1.0	89
39	Molecular mechanisms and biological importance of Plasmodium falciparum erythrocyte rosetting. Memorias Do Instituto Oswaldo Cruz, 1992, 87, 323-329.	0.8	19
40	Rosette Formation in Plasmodium falciparum Isolates and Anti-Rosette Activity of Sera from Gambians with Cerebral or Uncomplicated Malaria. American Journal of Tropical Medicine and Hygiene, 1992, 46, 503-510.	0.6	149
41	Ultrastructural Analysis of Fresh Plasmodium falciparum-Infected Erythrocytes and Their Cytoadherence to Human Leukocytes. American Journal of Tropical Medicine and Hygiene, 1992, 46, 511-519.	0.6	23
42	Disruption of Plasmodium falciparum Erythrocyte Rosettes by Standard Heparin and Heparin Devoid of Anticoagulant Activity. American Journal of Tropical Medicine and Hygiene, 1992, 46, 595-602.	0.6	75
43	Human cerebral malaria: association with erythrocyte rosetting and lack of anti-rosetting antibodies. Lancet, The, 1990, 336, 1457-1460.	6.3	413
44	Geographical Distribution of Plasmodium Falciparum Erythrocyte Rosetting and Frequency of Rosetting Antibodies in Human Sera. American Journal of Tropical Medicine and Hygiene, 1990, 43, 333-338.	0.6	30