Deli Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/754536/publications.pdf

Version: 2024-02-01

163	9,514	51 h-index	90
papers	citations		g-index
163	163	163	11750 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Plant Species Richness and Ecosystem Multifunctionality in Global Drylands. Science, 2012, 335, 214-218.	6.0	1,043
2	Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15684-15689.	3.3	728
3	Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant and Soil, 2007, 294, 263-276.	1.8	302
4	Template-Free Synthesis of Hollow-Structured Co ₃ O ₄ Nanoparticles as High-Performance Anodes for Lithium-Ion Batteries. ACS Nano, 2015, 9, 1775-1781.	7.3	275
5	Recent Advances of Structurally Ordered Intermetallic Nanoparticles for Electrocatalysis. ACS Catalysis, 2018, 8, 3237-3256.	5.5	245
6	Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regulation, 2008, 56, 179-190.	1.8	229
7	Porous Structured Ni–Fe–P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 26134-26142.	4.0	220
8	Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6187-6192.	3.3	219
9	Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag Plant and Soil, 2005, 271, 15-26.	1.8	202
10	Two-Dimensional Phosphorus-Doped Carbon Nanosheets with Tunable Porosity for Oxygen Reactions in Zinc-Air Batteries. ACS Catalysis, 2018, 8, 2464-2472.	5.5	175
11	Defect and DopingÂCo-Engineered Non-Metal Nanocarbon ORR Electrocatalyst. Nano-Micro Letters, 2021, 13, 65.	14.4	169
12	3D Porous Carbon Sheets with Multidirectional Ion Pathways for Fast and Durable Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1702381.	10.2	165
13	Impacts of grazing by different large herbivores in grassland depend on plant species diversity. Journal of Applied Ecology, 2015, 52, 1053-1062.	1.9	145
14	Morphology and Activity Tuning of Cu ₃ Pt/C Ordered Intermetallic Nanoparticles by Selective Electrochemical Dealloying. Nano Letters, 2015, 15, 1343-1348.	4.5	131
15	One-Nanometer-Thick Pt ₃ Ni Bimetallic Alloy Nanowires Advanced Oxygen Reduction Reaction: Integrating Multiple Advantages into One Catalyst. ACS Catalysis, 2019, 9, 4488-4494.	5.5	126
16	Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell, Tissue and Organ Culture, 2010, 100, 219-227.	1.2	112
17	From a ZIF-8 polyhedron to three-dimensional nitrogen doped hierarchical porous carbon: an efficient electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 10731-10739.	5.2	111
18	Controllable synthesis of molybdenum-based electrocatalysts for a hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 4879-4885.	5.2	110

#	Article	IF	CITATIONS
19	Sea urchin-like Ni–Fe sulfide architectures as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 12350-12357.	5.2	109
20	MoS ₂ –MoP heterostructured nanosheets on polymer-derived carbon as an electrocatalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 616-622.	5.2	104
21	Optimizing the ORR activity of Pd based nanocatalysts by tuning their strain and particle size. Journal of Materials Chemistry A, 2017, 5, 9867-9872.	5.2	98
22	Heteroatom (P, B, or S) incorporated NiFe-based nanocubes as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 7062-7069.	5.2	98
23	Copper-Induced Formation of Structurally Ordered Pt–Fe–Cu Ternary Intermetallic Electrocatalysts with Tunable Phase Structure and Improved Stability. Chemistry of Materials, 2018, 30, 5987-5995.	3.2	96
24	The Vacuolar Na+/H+ Antiporter Gene SsNHX1 from the Halophyte Salsola soda Confers Salt Tolerance in Transgenic Alfalfa (Medicago sativa L.). Plant Molecular Biology Reporter, 2011, 29, 278-290.	1.0	85
25	Accurate Control Multiple Active Sites of Carbonaceous Anode for High Performance Sodium Storage: Insights into Capacitive Contribution Mechanism. Advanced Energy Materials, 2020, 10, 1903312.	10.2	85
26	Golden Palladium Zinc Ordered Intermetallics as Oxygen Reduction Electrocatalysts. ACS Nano, 2019, 13, 5968-5974.	7.3	83
27	The effects of large herbivore grazing on meadow steppe plant and insect diversity. Journal of Applied Ecology, 2012, 49, 1075-1083.	1.9	79
28	Interactions between herbivory and resource availability on grazing tolerance of Leymus chinensis. Environmental and Experimental Botany, 2008, 63, 113-122.	2.0	78
29	Recent Progress on Mesoporous Carbon Materials for Advanced Energy Conversion and Storage. Particle and Particle Systems Characterization, 2014, 31, 515-539.	1.2	77
30	Climate and soil attributes determine plant species turnover in global drylands. Journal of Biogeography, 2014, 41, 2307-2319.	1.4	76
31	Turning Waste into Treasure: Regulating the Oxygen Corrosion on Fe Foam for Efficient Electrocatalysis. Small, 2020, 16, e2000663.	5.2	76
32	Tailoring the Antipoisoning Performance of Pd for Formic Acid Electrooxidation via an Ordered PdBi Intermetallic. ACS Catalysis, 2020, 10, 9977-9985.	5.5	75
33	Mechanisms linking plant species richness to foraging of a large herbivore. Journal of Applied Ecology, 2010, 47, 868-875.	1.9	74
34	Supramolecular gel-assisted synthesis of double shelled Co@CoO@N–C/C nanoparticles with synergistic electrocatalytic activity for the oxygen reduction reaction. Nanoscale, 2016, 8, 4681-4687.	2.8	74
35	Restricting Growth of Ni ₃ Fe Nanoparticles on Heteroatom-Doped Carbon Nanotube/Graphene Nanosheets as Air-Electrode Electrocatalyst for Zn–Air Battery. ACS Applied Materials & Interfaces, 2018, 10, 38093-38100.	4.0	74
36	Hierarchical Bimetallic Ni–Co–P Microflowers with Ultrathin Nanosheet Arrays for Efficient Hydrogen Evolution Reaction over All pH Values. ACS Applied Materials & Interfaces, 2019, 11, 42233-42242.	4.0	70

#	Article	IF	CITATIONS
37	Transforming Damage into Benefit: Corrosion Engineering Enabled Electrocatalysts for Water Splitting. Advanced Functional Materials, 2021, 31, 2009032.	7.8	70
38	Efficient Electrochemical Production of H ₂ O ₂ on Hollow N-Doped Carbon Nanospheres with Abundant Micropores. ACS Applied Materials & Diterfaces, 2021, 13, 29551-29557.	4.0	70
39	The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe. Plant and Soil, 2012, 352, 143-156.	1.8	69
40	Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction. Nature Communications, 2016, 7, 11941.	5.8	67
41	Nitrogen and sulfur co-doping of partially exfoliated MWCNTs as 3-D structured electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 5678-5684.	5.2	66
42	Effects of crystal phase and composition on structurally ordered Pt–Co–Ni/C ternary intermetallic electrocatalysts for the formic acid oxidation reaction. Journal of Materials Chemistry A, 2018, 6, 5848-5855.	5.2	66
43	The diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation. Ecological Indicators, 2021, 129, 107989.	2.6	66
44	Infiltrating sulfur in hierarchical architecture MWCNT@meso C core–shell nanocomposites for lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2013, 15, 9051.	1.3	65
45	Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale. Nature Communications, 2016, 7, 13335.	5.8	65
46	Self-Optimized Ligand Effect in L1 ₂ -PtPdFe Intermetallic for Efficient and Stable Alkaline Hydrogen Oxidation Reaction. ACS Catalysis, 2020, 10, 15207-15216.	5.5	64
47	Effects of altered precipitation on insect community composition and structure in a meadow steppe. Ecological Entomology, 2014, 39, 453-461.	1.1	61
48	Synergistic enhancement of nitrogen and sulfur co-doped graphene with carbon nanosphere insertion for the electrocatalytic oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 7727-7731.	5.2	61
49	Coordination effect of network NiO nanosheet and a carbon layer on the cathode side in constructing a high-performance lithium–sulfur battery. Journal of Materials Chemistry A, 2018, 6, 6503-6509.	5.2	58
50	Nitrogen addition reduced ecosystem stability regardless of its impacts on plant diversity. Journal of Ecology, 2019, 107, 2427-2435.	1.9	57
51	Recent Progress of Palladium-Based Electrocatalysts for the Formic Acid Oxidation Reaction. Energy & E	2.5	57
52	Hollow Porous Carbon-Confined Atomically Ordered PtCo ₃ Intermetallics for an Efficient Oxygen Reduction Reaction. ACS Catalysis, 2022, 12, 5380-5387.	5.5	57
53	Positive interactions between large herbivores and grasshoppers, and their consequences for grassland plant diversity. Ecology, 2014, 95, 1055-1064.	1.5	56
54	Hainan Black-crested Gibbon Is Headed For Extinction. International Journal of Primatology, 2005, 26, 453-465.	0.9	55

#	Article	IF	CITATIONS
55	Soil amendment application frequency contributes to phytoextraction of lead by sunflower at different nutrient levels. Environmental and Experimental Botany, 2009, 65, 410-416.	2.0	53
56	Bimetallic Nanoparticle Oxidation in Three Dimensions by Chemically Sensitive Electron Tomography and <i>in Situ</i> Transmission Electron Microscopy. ACS Nano, 2018, 12, 7866-7874.	7.3	49
57	A metaâ€analysis of effects of physiological integration in clonal plants under homogeneous vs. heterogeneous environments. Functional Ecology, 2021, 35, 578-589.	1.7	49
58	Cytosine Methylation Alteration in Natural Populations of Leymus chinensis Induced by Multiple Abiotic Stresses. PLoS ONE, 2013, 8, e55772.	1.1	48
59	3D hollow structured Co ₂ FeO ₄ /MWCNT as an efficient non-precious metal electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 1601-1608.	5.2	48
60	Plants Can Benefit from Herbivory: Stimulatory Effects of Sheep Saliva on Growth of Leymus chinensis. PLoS ONE, 2012, 7, e29259.	1.1	48
61	Effects of grazing on soil nitrogen spatial heterogeneity depend on herbivore assemblage and preâ€grazing plant diversity. Journal of Applied Ecology, 2016, 53, 242-250.	1.9	47
62	Structurally ordered $Ptae^{c}Zn/C$ series nanoparticles as efficient anode catalysts for formic acid electrooxidation. Journal of Materials Chemistry A, 2015, 3, 22129-22135.	5.2	46
63	Effects of Various Salt–Alkaline Mixed Stresses on the State of Mineral Elements in Nutrient Solutions and the Growth of Alkali Resistant Halophyte <i>Chloris Virgata</i> . Journal of Plant Nutrition, 2009, 32, 1137-1147.	0.9	44
64	Highly active N-doped carbon encapsulated Pd-Fe intermetallic nanoparticles for the oxygen reduction reaction. Nano Research, 2020, 13, 2365-2370.	5.8	44
65	Towards a mechanistic understanding of the effect that different species of large grazers have on grassland soil N availability. Journal of Ecology, 2018, 106, 357-366.	1.9	43
66	Recent advances on metal alkoxide-based electrocatalysts for water splitting. Journal of Materials Chemistry A, 2020, 8, 10130-10149.	5.2	43
67	Aboveground biomass and root/shoot ratio regulated drought susceptibility of ecosystem carbon exchange in a meadow steppe. Plant and Soil, 2018, 432, 259-272.	1.8	41
68	Tuning the electrocatalytic activity of Pt by structurally ordered PdFe/C for the hydrogen oxidation reaction in alkaline media. Journal of Materials Chemistry A, 2018, 6, 11346-11352.	5.2	41
69	Spatially complex neighboring relationships among grassland plant species as an effective mechanism of defense against herbivory. Oecologia, 2010, 164, 193-200.	0.9	39
70	Grazing Intensity and Phenotypic Plasticity in the Clonal Grass Leymus chinensis. Rangeland Ecology and Management, 2017, 70, 740-747.	1.1	39
71	Highly Nitrogen-Doped Three-Dimensional Carbon Fibers Network with Superior Sodium Storage Capacity. ACS Applied Materials & Samp; Interfaces, 2017, 9, 28604-28611.	4.0	38
72	Tuning Coal into Graphene-Like Nanocarbon for Electrochemical H ₂ O ₂ Production with Nearly 100% Faraday Efficiency. ACS Sustainable Chemistry and Engineering, 2021, 9, 9369-9375.	3.2	37

#	Article	IF	Citations
73	Diet selection variation of a large herbivore in a feeding experiment with increasing species numbers and different plant functional group combinations. Acta Oecologica, 2011, 37, 263-268.	0.5	36
74	Reproductive Characters and Mating Behaviour of Wild Nomascus hainanus. International Journal of Primatology, 2008, 29, 1037-1046.	0.9	35
75	Grazer effects on soil carbon storage vary by herbivore assemblage in a semiâ€arid grassland. Journal of Applied Ecology, 2018, 55, 2517-2526.	1.9	34
76	Interactive effects of large herbivores and plant diversity on insect abundance in a meadow steppe in China. Agriculture, Ecosystems and Environment, 2015, 212, 245-252.	2.5	33
77	Human impacts and aridity differentially alter soil <scp>N</scp> availability in drylands worldwide. Global Ecology and Biogeography, 2016, 25, 36-45.	2.7	33
78	Optimizing PtFe intermetallics for oxygen reduction reaction: from DFT screening to <i>in situ</i> XAFS characterization. Nanoscale, 2019, 11, 20301-20306.	2.8	33
79	Effectively suppressing lithium dendrite growth <i>via</i> an es-LiSPCE single-ion conducting nano fiber membrane. Journal of Materials Chemistry A, 2020, 8, 2518-2528.	5. 2	33
80	Livestock overgrazing disrupts the positive associations between soil biodiversity and nitrogen availability. Functional Ecology, 2020, 34, 1713-1720.	1.7	33
81	Spatial distributions of multiple plant species affect herbivore foraging selectivity. Oikos, 2010, 119, 401-408.	1.2	32
82	Ecosystem engineering strengthens bottom-up and weakens top-down effects via trait-mediated indirect interactions. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170894.	1.2	32
83	Feces nitrogen release induced by different large herbivores in a dry grassland. Ecological Applications, 2018, 28, 201-211.	1.8	31
84	Investigation of MXenes as oxygen reduction electrocatalyst for selective H2O2 generation. Nano Research, 2022, 15, 3927-3932.	5.8	30
85	Effects of Water and Nitrogen Addition on Ecosystem Carbon Exchange in a Meadow Steppe. PLoS ONE, 2015, 10, e0127695.	1.1	29
86	Various Structured Molybdenum-based Nanomaterials as Advanced Anode Materials for Lithium ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12366-12372.	4.0	29
87	Multiple Active Sites Carbonaceous Anodes for Na ⁺ Storage: Synthesis, Electrochemical Properties and Reaction Mechanism Analysis. Advanced Functional Materials, 2021, 31, 2007247.	7.8	29
88	Large herbivores influence plant litter decomposition by altering soil properties and plant quality in a meadow steppe. Scientific Reports, 2018, 8, 9089.	1.6	28
89	Rational Design and Engineering of Nanomaterials Derived from Prussian Blue and Its Analogs for Electrochemical Water Splitting. Chemistry - an Asian Journal, 2020, 15, 958-972.	1.7	28
90	Sheep grazing and local community diversity interact to control litter decomposition of dominant species in grassland ecosystem. Soil Biology and Biochemistry, 2017, 115, 364-370.	4.2	27

#	Article	IF	Citations
91	Differential effects of grazing, water, and nitrogen addition on soil respiration and its components in a meadow steppe. Plant and Soil, 2020, 447, 581-598.	1.8	26
92	Anthropogenic disturbances caused declines in the wetland area and carbon pool in China during the last four decades. Global Change Biology, 2021, 27, 3837-3845.	4.2	26
93	Negative effects of vertebrate on invertebrate herbivores mediated by enhanced plant nitrogen content. Journal of Ecology, 2019, 107, 901-912.	1.9	25
94	A general approach for the direct fabrication of metal oxide-based electrocatalysts for efficient bifunctional oxygen electrodes. Sustainable Energy and Fuels, 2017, 1, 823-831.	2.5	24
95	Livestock grazing impacts on plateau pika (Ochotona curzoniae) vary by species identity. Agriculture, Ecosystems and Environment, 2019, 275, 23-31.	2.5	24
96	Patterns of Cross-Continental Variation in Tree Seed Mass in the Canadian Boreal Forest. PLoS ONE, 2013, 8, e61060.	1.1	23
97	A Lowâ€Temperature Carbon Encapsulation Strategy for Stable and Poisoningâ€Tolerant Electrocatalysts. Small Methods, 2021, 5, e2100937.	4.6	22
98	Alfalfa as a supplement of dried cornstalk diets: Associative effects on intake, digestibility, nitrogen metabolisation, rumen environment and hematological parameters in sheep. Livestock Science, 2008, 113, 87-97.	0.6	21
99	Improving Ecological Restoration to Curb Biotic Invasion—A Practical Guide. Invasive Plant Science and Management, 2018, 11, 163-174.	0.5	20
100	Reciprocal facilitation between large herbivores and ants in a semi-arid grassland. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181665.	1.2	20
101	Optimizing Formic Acid Electro-oxidation Performance by Restricting the Continuous Pd Sites in Pd–Sn Nanocatalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 12239-12247.	3.2	20
102	Soil engineering by ants facilitates plant compensation for large herbivore removal of aboveground biomass. Ecology, 2021, 102, e03312.	1.5	20
103	Patterns of Soil Bacterial Richness and Composition Tied to Plant Richness, Soil Nitrogen, and Soil Acidity in Alpine Tundra. Arctic, Antarctic, and Alpine Research, 2017, 49, 441-453.	0.4	19
104	Interactive effects of exogenous melatonin and Rhizophagus intraradices on saline-alkaline stress tolerance in Leymus chinensis. Mycorrhiza, 2020, 30, 357-371.	1.3	19
105	Coupling Co–N–C with MXenes Yields Highly Efficient Catalysts for H ₂ O ₂ Production in Acidic Media. ACS Applied Materials & Interfaces, 2022, 14, 11350-11358.	4.0	19
106	Plant diversity is associated with the amount and spatial structure of soil heterogeneity in meadow steppe of China. Landscape Ecology, 2015, 30, 1713-1721.	1.9	18
107	Engineering Ir Atomic Configuration for Switching the Pathway of Formic Acid Electrooxidation Reaction. Advanced Functional Materials, 2022, 32, 2107672.	7.8	18
108	Influences of major nutrient elements on Pb accumulation of two crops from a Pb-contaminated soil. Journal of Hazardous Materials, 2010, 174, 202-208.	6.5	17

#	Article	IF	Citations
109	Responses of community-level plant-insect interactions to climate warming in a meadow steppe. Scientific Reports, 2016, 5, 18654.	1.6	17
110	Impacts of grazing intensity and increased precipitation on a grasshopper assemblage (<scp>O</scp> rthoptera: <scp>A</scp> crididae) in a meadow steppe. Ecological Entomology, 2017, 42, 458-468.	1.1	17
111	Reversal of nitrogen-induced species diversity declines mediated by change in dominant grass and litter. Oecologia, 2018, 188, 921-929.	0.9	17
112	Interactive effects of nitrogen addition and litter on soil nematodes in grassland. European Journal of Soil Science, 2019, 70, 697-706.	1.8	17
113	Grazing Affects Bacterial and Fungal Diversities and Communities in the Rhizosphere and Endosphere Compartments of Leymus chinensis through Regulating Nutrient and Ion Distribution. Microorganisms, 2021, 9, 476.	1.6	15
114	Competitive relationships between two contrasting but coexisting grasses. Plant Ecology, 2006, 183, 19-26.	0.7	14
115	Regulated iron corrosion towards fabricating large-area self-supporting electrodes for efficient oxygen evolution reaction. Journal of Materials Chemistry A, O, , .	5.2	14
116	Nitrogen and litter addition decreased sexual reproduction and increased clonal propagation in grasslands. Oecologia, 2021, 195, 131-144.	0.9	14
117	Overgrazing, not haying, decreases grassland topsoil organic carbon by decreasing plant species richness along an aridity gradient in Northern China. Agriculture, Ecosystems and Environment, 2022, 332, 107935.	2.5	14
118	Foraging responses of sheep to plant spatial microâ€patterns can cause diverse associational effects of focal plant at individual and population levels. Journal of Animal Ecology, 2018, 87, 863-873.	1.3	13
119	Effects of herbivore assemblage on the spatial heterogeneity of soil nitrogen in eastern Eurasian steppe. Journal of Applied Ecology, 2020, 57, 1551-1560.	1.9	13
120	The effect of plant spatial pattern within a patch on foraging selectivity of grazing sheep. Landscape Ecology, 2012, 27, 911-919.	1.9	12
121	Enhanced electrocatalytic activity and stability of Pd ₃ V/C nanoparticles with a trace amount of Pt decoration for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 20966-20972.	5.2	12
122	High plant diversity stimulates foraging motivation in grazing herbivores. Basic and Applied Ecology, 2016, 17, 43-51.	1.2	12
123	Elevated air temperature shifts the interactions between plants and endophytic fungal entomopathogens in an agroecosystem. Fungal Ecology, 2020, 47, 100940.	0.7	11
124	How does the foraging behavior of large herbivores cause different associational plant defenses?. Scientific Reports, 2016, 6, 20561.	1.6	10
125	Large herbivores facilitate a dominant grassland forb via multiple indirect effects. Ecology, 2022, 103, e3635.	1.5	10
126	Variations in the traits of fine roots of different orders and their associations with leaf traits in 12 co-occuring plant species in a semiarid inland dune. Plant and Soil, 2022, 472, 193-206.	1.8	10

#	Article	IF	Citations
127	Vegetation and community changes of elm (Ulmus pumila) woodlands in Northeastern China in 1983–2011. Chinese Geographical Science, 2013, 23, 321-330.	1.2	8
128	Effects of large herbivore grazing on grasshopper behaviour and abundance in a meadow steppe. Ecological Entomology, 2020, 45, 1357-1366.	1.1	8
129	Herbivore Assemblage as an Important Factor Modulating Grazing Effects on Ecosystem Carbon Fluxes in a Meadow Steppe in Northeast China. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005652.	1.3	8
130	Worldwide effects of nonâ€native species on species–area relationships. Conservation Biology, 2021, 35, 711-721.	2.4	8
131	A facilitation between large herbivores and ants accelerates litter decomposition by modifying soil microenvironmental conditions. Functional Ecology, 2021, 35, 1822-1832.	1.7	8
132	Cattle grazing mitigates the negative impacts of nitrogen addition on soil nematode communities. Ecological Indicators, 2021, 129, 107876.	2.6	8
133	Growth responses of Leymus chinensis (Trin.) Tzvelev to sheep saliva after defoliation. Rangeland Journal, 2010, 32, 419.	0.4	7
134	Forage intake and weight gain of ewes is affected by roughage mixes during winter in northeastern China. Animal Science Journal, 2017, 88, 1058-1065.	0.6	7
135	Shrub patches capture tumble plants: potential evidence for a self-reinforcing pattern in a semiarid shrub encroached grassland. Plant and Soil, 2019, 442, 311-321.	1.8	7
136	Food and habitat provisions jointly determine competitive and facilitative interactions among distantly related herbivores. Functional Ecology, 2019, 33, 2381-2390.	1.7	7
137	Fine-scale characteristics of the boundaries between annual patches and perennial patches in a meadow steppe. Landscape Ecology, 2019, 34, 811-825.	1.9	7
138	Intensive grazing enhances grasshopper fitness and abundance in a meadow steppe. Agriculture, Ecosystems and Environment, 2020, 300, 107012.	2.5	7
139	Herbivore phenology can predict response to changes in plant quality by livestock grazing. Oikos, 2020, 129, 811-819.	1.2	7
140	Effects of grazing on C:N:P stoichiometry attenuate from soils to plants and insect herbivores in a semi-arid grassland. Oecologia, 2021, 195, 785-795.	0.9	7
141	Combined attributes of soil nematode communities as indicators of grassland degradation. Ecological Indicators, 2021, 131, 108215.	2.6	7
142	Effects of spatial distribution on plant associational defense against herbivory. Basic and Applied Ecology, 2013, 14, 680-686.	1.2	6
143	Resourceâ€mediated effects of grazing and irrigation onÂinsect diversity in a meadow steppe. Insect Conservation and Diversity, 2019, 12, 29-38.	1.4	6
144	Defoliation and neighbouring legume plants accelerate leaf and root litter decomposition of Leymus chinensis dominating grasslands. Agriculture, Ecosystems and Environment, 2020, 302, 107074.	2.5	6

#	Article	IF	CITATIONS
145	Species Diversity Induces Idiosyncratic Effects on Litter Decomposition in a Degraded Meadow Steppe. Frontiers in Environmental Science, 2021, 9, .	1.5	6
146	Livestock diversification implicitly affects litter decomposition depending on altered soil properties and plant litter quality in a meadow steppe. Plant and Soil, 2022, 473, 49-62.	1.8	5
147	A rodent herbivore reduces its predation risk through ecosystem engineering. Current Biology, 2022, 32, 1869-1874.e4.	1.8	5
148	Semi-Interpenetrating Polymer Network Membranes from SPEEK and BPPO for High Concentration DMFC. ACS Applied Energy Materials, 0, , .	2.5	4
149	Two-Dimensional Wrinkled N-Rich Carbon Nanosheets Fabricated from Chitin via Fast Pyrolysis as Optimized Electrocatalyst. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	4
150	Grazing by large herbivores improves soil microbial metabolic activity in a meadow steppe. Grassland Science, 2021, 67, 30-40.	0.6	4
151	Reply to Liang and Gornish: Climate and livestock grazing jointly regulate grassland ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23889-23890.	3.3	3
152	Introduced ecological engineers drive behavioral changes of grasshoppers, consequently linking to its abundance in two grassland plant communities. Oecologia, 2021, 195, 1007-1018.	0.9	3
153	Species-specific herbivore grazing of type-specific grassland can assist with promotion of shallow layer of soil carbon sequestration. Environmental Research Letters, 2021, 16, 114033.	2.2	3
154	Mixing effects of three Eurasian plants on root decomposition in the existence of living plant community in a meadow steppe. Science of the Total Environment, 2022, 811, 151400.	3.9	3
155	The responses of different insect guilds to grassland degradation in northeastern China. Ecological Indicators, 2021, 133, 108369.	2.6	3
156	Preventing rangeland degradation: a shared problem for Australia and China. Rangeland Journal, 2020, 42, 323.	0.4	2
157	Large herbivores facilitate an insect herbivore by modifying plant community composition in a temperate grassland. Ecology and Evolution, 2021, 11, 16314-16326.	0.8	2
158	Water-soluble polysaccharide from Taraxacum platycarpum: isolation, chemical compositions, and antioxidant activity. Chemistry of Natural Compounds, 2012, 48, 110-111.	0.2	1
159	Homoploid F1 hybrids and segmental allotetraploids of japonica and indica rice subspecies show similar and enhanced tolerance to nitrogen deficiency than parental lines. Journal of Experimental Botany, 2021, 72, 5612-5624.	2.4	1
160	The Characteristics of Mercury Flux at the Interfaces between Two Typical Plants and the Air in Leymus chinensis Grasslands. International Journal of Environmental Research and Public Health, 2021, 18, 10115.	1.2	1
161	Gaseous Elemental Mercury Exchange Fluxes over Air-Soil Interfaces in the Degraded Grasslands of Northeastern China. Biology, 2021, 10, 917.	1.3	1
162	Phenotypic plasticity couples with transcriptomic flexibility in Leymus chinensis under diverse edaphic conditions. Environmental and Experimental Botany, 2022, 197, 104838.	2.0	1

#	Article	IF	CITATIONS
163	Reply to Hu et al.: Whether grazer diversity or grazing intensity really accounts for grassland functioning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18764-18764.	3.3	O