Tae-Yeon Seong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7545197/publications.pdf

Version: 2024-02-01

253 papers 6,118 citations

71102 41 h-index 91884 69 g-index

256 all docs

256 docs citations

256 times ranked

4771 citing authors

#	Article	IF	CITATIONS
1	High ultraviolet transparent conducting electrodes formed using tantalum oxide/Ag multilayer. Ceramics International, 2022, 48, 3536-3543.	4.8	2
2	Patterning Allâ€Inorganic Halide Perovskite with Adjustable Phase for Highâ€Resolution Color Filter and Photodetector Arrays. Advanced Functional Materials, 2022, 32, .	14.9	21
3	Modulation of lattice strain in ZnO thin films by ion implantation. Materials Letters, 2022, 314, 131839.	2.6	2
4	Interplay of sidewall damage and light extraction efficiency of micro-LEDs. Optics Letters, 2022, 47, 2250.	3.3	15
5	Inhomogeneous Barrier Height Characteristics of n-Type AllnP for Red AlGaInP-Based Light-Emitting Diodes. ECS Journal of Solid State Science and Technology, 2022, 11, 035007.	1.8	O
6	Improved performance of deep ultraviolet AlGaN-based light-emitting diode by reducing contact resistance of Al-based reflector. Journal of Alloys and Compounds, 2022, 910, 164895.	5 . 5	2
7	An Artificial Tactile Neuron Enabling Spiking Representation of Stiffness and Disease Diagnosis. Advanced Materials, 2022, 34, e2201608.	21.0	20
8	The effect of dry etching condition on the performance of blue micro light-emitting diodes with reduced quantum confined Stark effect epitaxial layer. Journal of Applied Physics, 2022, 131, 153104.	2.5	2
9	Exploring dopant effects in stannic oxide nanoparticles for CO2 electro-reduction to formate. Nature Communications, 2022, 13, 2205.	12.8	61
10	SWIR imaging using PbS QD photodiode array sensors. Optics Express, 2022, 30, 20659.	3 . 4	0
11	Using a NiZn solid solution layer to produce high-barrier height Schottky contact to semipolar (20–21) n-type GaN. Journal of Alloys and Compounds, 2021, 852, 157003.	5 . 5	4
12	Improving Performance of GaAs-Based Vertical-Cavity Surface-Emitting Lasers by Employing Thermally Conductive Metal Substrate. ECS Journal of Solid State Science and Technology, 2021, 10, 015001.	1.8	2
13	Using Ag Sinter Paste to Improve the Luminous Flux and Reliability of InGaN-Based LED Package for Commercial Vehicle Daytime Running Light. ECS Journal of Solid State Science and Technology, 2021, 10, 015004.	1.8	1
14	A Comparison Study on Multilayered Barrier Oxide Structure in Charge Trap Flash for Synaptic Operation. Crystals, 2021, 11, 70.	2.2	5
15	Microâ€Light Emitting Diode: From Chips to Applications. Laser and Photonics Reviews, 2021, 15, 2000133.	8.7	108
16	Improved Reliability of 278 nm Deep Ultraviolet AlGaN-Based Flip-Chip Light Emitting Diodes by Using ITO/Al Contact. ECS Journal of Solid State Science and Technology, 2021, 10, 045002.	1.8	3
17	Improving Emission Uniformity of InGaN/GaN-Based Vertical LEDs by Using Reflective ITO/Ag n-Contact. Electronics (Switzerland), 2021, 10, 975.	3.1	1
18	Optimization of Ni/Ag-Based Reflectors to Improve the Performance of 273 nm Deep Ultraviolet AlGaN-Based Light Emitting Diodes. ECS Journal of Solid State Science and Technology, 2021, 10, 045005.	1.8	3

#	Article	IF	CITATIONS
19	Using Self-Aligned Si Barrier to Enhance the Contrast Ratio and Performance of Pixelated Light Emitting Diode for Vehicle Headlamp. ECS Journal of Solid State Science and Technology, 2021, 10, 045003.	1.8	1
20	Tantalum Doping to Improve Switching Characteristics and Bias Stress Stability of Amorphous Indium-Gallium-Zin Oxide Thin-Film Transistors. ECS Journal of Solid State Science and Technology, 2021, 10, 065004.	1.8	0
21	Design of mid-infrared filter array based on plasmonic metal nanodiscs array and its application to on-chip spectrometer. Scientific Reports, 2021, 11, 12218.	3.3	12
22	Stable electrical performance of AlGaInP-based red micro-light emitting diode by controlling interfacial morphologies of metal contacts. Journal of Alloys and Compounds, 2021, 872, 159629.	5.5	5
23	Effects of Current, Temperature, and Chip Size on the Performance of AlGaInP-Based Red Micro-Light-Emitting Diodes with Different Contact Schemes. ECS Journal of Solid State Science and Technology, 2021, 10, 095001.	1.8	12
24	High Field-Effect Mobility Two-Channel InGaZnO Thin-Film Transistors for Low-Voltage Operation. IEEE Transactions on Electron Devices, 2021, 68, 6166-6170.	3.0	1
25	Realization of an Artificial Visual Nervous System using an Integrated Optoelectronic Device Array. Advanced Materials, 2021, 33, e2105485.	21.0	33
26	Realization of an Artificial Visual Nervous System using an Integrated Optoelectronic Device Array (Adv. Mater. 51/2021). Advanced Materials, 2021, 33, .	21.0	3
27	Effect of unevenly-distributed V pits on the optical and electrical characteristics of green micro-light emitting diode. Journal Physics D: Applied Physics, 2020, 53, 045106.	2.8	3
28	Improvement in the Reliability of AlGalnP-Based Light-Emitting Diode Package Using Optimal Silicone and Leadframe Structure. ECS Journal of Solid State Science and Technology, 2020, 9, 015014.	1.8	4
29	Self-catalytic-grown SnO x nanocones for light outcoupling enhancement in organic light-emitting diodes. Nanotechnology, 2020, 31, 135204.	2.6	3
30	Improvement of The Light Output of Blue InGaN-Based Light Emitting Diodes by Using a Buried Stripe-Typen-Contact and Reflective Bonding Pad. ECS Journal of Solid State Science and Technology, 2020, 9, 015021.	1.8	0
31	Formation of high ultraviolet transparent SrVOx/Ag-based conducting electrode. Ceramics International, 2020, 46, 19484-19490.	4.8	6
32	Damage-free plasma etching to enhance performance of AlGaInP-based micro-light emitting diode. IEEE Photonics Technology Letters, 2020, , 1-1.	2.5	4
33	Surface passivation of light emitting diodes: From nano-size to conventional mesa-etched devices. Surfaces and Interfaces, 2020, 21, 100765.	3.0	11
34	Forming high transmittance GaSnO/Ag/GaSnO conducting electrodes for optoelectronic devices. Ceramics International, 2020, 46, 28165-28172.	4.8	3
35	Thermally stable AgCu alloy disc array for near infrared filters. Current Applied Physics, 2020, 20, 1321-1327.	2.4	2
36	Improved Leakage and Output Characteristics of Pixelated LED Array for Headlight application. ECS Journal of Solid State Science and Technology, 2020, 9, 045011.	1.8	1

3

#	Article	IF	Citations
37	Performance Comparison of InGaN-Based Phosphor Converted and AlGaInP-Based Red Light-Emitting Diode Packages for Vehicle Rear Fog Lamps. ECS Journal of Solid State Science and Technology, 2020, 9, 055003.	1.8	1
38	Improving the Leakage Characteristics and Efficiency of GaN-based Micro-Light-Emitting Diode with Optimized Passivation. ECS Journal of Solid State Science and Technology, 2020, 9, 055001.	1.8	35
39	Optimization of InGaN-based LED Package Structure for Automotive Adaptive Driving Beam Headlamp. ECS Journal of Solid State Science and Technology, 2020, 9, 055017.	1.8	3
40	Effects of Ultraviolet Wavelength and Ambient Temperature on Reliability of Silicones in InAlGaN-Based Light-Emitting-Diode Package. ECS Journal of Solid State Science and Technology, 2020, 9, 035005.	1.8	2
41	Improved Light Output of AlGaInP-Based Micro-Light Emitting Diode Using Distributed Bragg Reflector. IEEE Photonics Technology Letters, 2020, 32, 438-441.	2.5	11
42	Oblique-Angle Deposited SiO ₂ /Al Omnidirectional Reflector for Enhancing the Performance of AlGaN-Based Ultraviolet Light-Emitting Diode. ECS Journal of Solid State Science and Technology, 2020, 9, 026005.	1.8	5
43	Using SiO2-Based Distributed Bragg Reflector to Improve the Performance of AlGaInP-Based Red Micro-Light Emitting Diode. ECS Journal of Solid State Science and Technology, 2020, 9, 036002.	1.8	4
44	Sputtering-deposited amorphous SrVOx-based memristor for use in neuromorphic computing. Scientific Reports, 2020, 10, 5761.	3. 3	19
45	Allâ€Solution Processed Multicolor Patterning Technique of Perovskite Nanocrystal for Color Pixel Array and Flexible Optoelectronic Devices. Advanced Optical Materials, 2020, 8, 2000501.	7.3	23
46	Heavy Mg Doping to Form Reliable Rh Reflective Ohmic Contact for 278 nm Deep Ultraviolet AlGaN-Based Light-Emitting Diodes. ECS Journal of Solid State Science and Technology, 2020, 9, 065016.	1.8	6
47	Selective Coating of White Silicone to Improve the Optical and Thermal Characteristics of White LED Packages. ECS Journal of Solid State Science and Technology, 2020, 9, 065008.	1.8	0
48	Effect of the Surface Morphology of Plated Printed Circuit Board on the Reliability of LED Packages. ECS Journal of Solid State Science and Technology, 2020, 9, 065018.	1.8	0
49	Ag–Pd–Cu alloy reflector to improve the opto-electrical performance and electromigration resistance of near ultraviolet GaN-based light-emitting diode. Journal of Alloys and Compounds, 2019, 800, 512-517.	5 . 5	11
50	Hole injection mechanism in the quantum wells of blue light emitting diode with ν pits for micro-display application. Applied Physics Express, 2019, 12, 102016.	2.4	6
51	Via-Hole-Type Flip-Chip Packaging to Improve the Thermal Characteristics and Reliability of Blue Light Emitting Diodes. ECS Journal of Solid State Science and Technology, 2019, 8, Q165-Q170.	1.8	5
52	Combined effects of oxygen pressures and RF powers on the electrical characteristics of ITO-based multilayer transparent electrodes. Vacuum, 2019, 169, 108871.	3.5	8
53	Using Ag disc array to tune infrared transmittance of ITO-based multilayer films. Journal of Alloys and Compounds, 2019, 785, 742-746.	5 . 5	4
54	Combined effects of V pits and chip size on the electrical and optical properties of green InGaN-based light-emitting diodes. Journal of Alloys and Compounds, 2019, 796, 146-152.	5 . 5	28

#	Article	IF	Citations
55	The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nature Photonics, 2019, 13, 233-244.	31.4	800
56	Optimization of tunable guided-mode resonance filter based on refractive index modulation of graphene. Scientific Reports, 2019, 9, 19951.	3.3	14
57	Solid-State Carbon-Doped GaN Schottky Diodes by Controlling Dissociation of the Graphene Interlayer with a Sputtered AlN Capping Layer. ACS Applied Materials & Sputtered AlN Capping Layer.	8.0	4
58	Forming ITO/Ag Hole-Array/ITO Multilayers for Near Infrared Transparent Conducting Electrodes and Filters. ECS Journal of Solid State Science and Technology, 2019, 8, Q189-Q193.	1.8	1
59	Plasma and Annealing Treatments to Form Height-Barrier Ni-Based Schottky Contact to n-GaN. ECS Journal of Solid State Science and Technology, 2019, 8, Q194-Q199.	1.8	4
60	Optimized ITO/Ag/ITO multilayers as a current spreading layer to enhance the light output of ultraviolet light-emitting diodes. Journal of Alloys and Compounds, 2019, 776, 960-964.	5 . 5	41
61	Inhomogeneity of barrier heights of transparent Ag/ITO Schottky contacts on n-type GaN annealed at different temperatures. Journal of Alloys and Compounds, 2018, 742, 66-71.	5.5	4
62	Interfacial reactions to form high-barrier-height ITO-based Schottky contacts on p-type GaN using a Ti interlayer. Journal of Alloys and Compounds, 2018, 741, 999-1005.	5 . 5	4
63	An Optically Flat Conductive Outcoupler Using Core/Shell Ag/ZnO Nanochurros. Small, 2018, 14, e1800056.	10.0	8
64	The effects of film thickness on the electrical, optical, and structural properties of cylindrical, rotating, magnetron-sputtered ITO films. Applied Surface Science, 2018, 440, 1211-1218.	6.1	59
65	High-performance GaN-based light emitting diodes grown on 8-inch Si substrate by using a combined low-temperature and high-temperature-grown AlN buffer layer. Journal of Alloys and Compounds, 2018, 732, 630-636.	5.5	22
66	Flexible ITO films with atomically flat surfaces for high performance flexible perovskite solar cells. Nanoscale, 2018, 10, 20587-20598.	5.6	58
67	Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures. Optics Express, 2018, 26, 11194.	3.4	135
68	Improved angular color uniformity and hydrothermal reliability of phosphor-converted white light-emitting diodes by using phosphor sedimentation. Optics Express, 2018, 26, 28634.	3.4	9
69	Reviewâ€"Group III-Nitride-Based Ultraviolet Light-Emitting Diodes: Ways of Increasing External Quantum Efficiency. ECS Journal of Solid State Science and Technology, 2017, 6, Q42-Q52.	1.8	81
70	Ag nanowire-based electrodes for improving the output power of ultraviolet AlGaN-based light-emitting diodes. Journal of Alloys and Compounds, 2017, 703, 198-203.	5. 5	13
71	Improved light output power of GaN-based ultraviolet light-emitting diode using a mesh-type GaN/SiO ₂ /Al omnidirectional reflector. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600789.	1.8	2
72	Electrical and optical characteristics of transparent conducting Si-doped ZnO/hole-patterned Ag/Si-doped ZnO multilayer films. Ceramics International, 2017, 43, 3693-3697.	4.8	6

#	Article	IF	Citations
73	Electron Transport Layer-Free Inverted Organic Solar Cells Fabricated with Highly Transparent Low-Resistance Indium Gallium Zinc Oxide/Ag/Indium Gallium Zinc Oxide Multilayer Electrode. Journal of Electronic Materials, 2017, 46, 2140-2146.	2.2	4
74	Reducing forward voltage and enhancing output performance of InGaN-based blue light-emitting diodes using metal dot-embedded transparent p-type finger. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600792.	1.8	3
75	Using agglomerated Ag grid to improve the light output of near ultraviolet AlGaN-based light-emitting diode. Microelectronic Engineering, 2017, 169, 29-33.	2.4	7
76	Improvement of the light output of AlGaInP-based light-emitting diode by employing highly transparent Au/ITO p -type electrode. Journal of Alloys and Compounds, 2017, 699, 1180-1185.	5.5	2
77	Inverted Organic Solar Cells Fabricated with Roomâ€Temperatureâ€deposited Transparent Multilayer Electrodes. Bulletin of the Korean Chemical Society, 2017, 38, 856-860.	1.9	1
78	A Thermally Stable NiZn/Ta/Ni Scheme to Replace AuBe/Au Contacts in High-Efficiency AlGaInP-Based Light-Emitting Diodes. Journal of Electronic Materials, 2017, 46, 4750-4754.	2.2	0
79	Transparent Conductive ITO/Ag/ITO Electrode Deposited at Room Temperature for Organic Solar Cells. Journal of Electronic Materials, 2017, 46, 306-311.	2.2	24
80	Cr/ITO semi-transparent n-type electrode for high-efficiency AlGaN/InGaN-based near ultraviolet light-emitting diodes. Superlattices and Microstructures, 2017, 111, 872-877.	3.1	2
81	Effect of Amine Additive for the Synthesis of Cadmium Selenide Quantum Dots in a Microreactor. International Journal of Applied Ceramic Technology, 2016, 13, 223-227.	2.1	6
82	InGaN-Based Light-Emitting Diodes Grown on a Micro/Nanoscale Hybrid Patterned Sapphire Substrate. ACS Applied Materials & Samp; Interfaces, 2016, 8, 34520-34529.	8.0	25
83	Controlling the defect density to improve the output power of InGaN/GaN-based vertical light-emitting diodes by using substrates patterned with SiO ₂ lenses. Philosophical Magazine, 2016, 96, 2919-2929.	1.6	2
84	Thermally stable AuBe-based ohmic contacts to p-type GaP for AlGaInP-based light-emitting diode by using a tungsten barrier layer. Journal of the Korean Physical Society, 2016, 68, 306-310.	0.7	2
85	A tantalum diffusion barrier layer for improving the output performance of AlGaInP-based light-emitting diodes. Japanese Journal of Applied Physics, 2016, 55, 032102.	1.5	2
86	Formation of Flexible and Transparent Indium Gallium Zinc Oxide/Ag/Indium Gallium Zinc Oxide Multilayer Film. Journal of Electronic Materials, 2016, 45, 4265-4269.	2.2	8
87	Control of refractive index by annealing to achieve high figure of merit for TiO2/Ag/TiO2 multilayer films. Ceramics International, 2016, 42, 14071-14076.	4.8	24
88	Electrical Characteristics of Schottky Contacts to p-Type (001) GaP: Understanding of Carrier Transport Mechanism. Journal of Electronic Materials, 2016, 45, 5297-5301.	2.2	1
89	Highly flexible Al-doped ZnO/Ag/Al-doped ZnO multilayer films deposited on PET substrates at room temperature. Ceramics International, 2016, 42, 3473-3478.	4.8	31
90	Flexible and transparent TiO ₂ /Ag/ITO multilayer electrodes on PET substrates for organic photonic devices. Journal of Materials Research, 2015, 30, 1593-1598.	2.6	11

#	Article	IF	Citations
91	Design of near-unity transmittance dielectric/Ag/ITO electrodes for GaN-based light-emitting diodes. Current Applied Physics, 2015, 15, 833-838.	2.4	19
92	Ultrafast chemical lithiation of single crystalline silicon nanowires: in situ characterization and first principles modeling. RSC Advances, 2015, 5, 17438-17443.	3.6	11
93	Optimization of transmittance and resistance of indium gallium zinc oxide/Ag/indium gallium zinc oxide multilayer electrodes for photovoltaic devices. Current Applied Physics, 2015, 15, 452-455.	2.4	18
94	Highly Transparent and Low-Resistance Indium-Free ZnO/Ag/ZnO Multilayer Electrodes for Organic Photovoltaic Devices. Journal of Electronic Materials, 2015, 44, 3967-3972.	2.2	24
95	Highly flexible ZnO/Ag/ZnO conducting electrode for organic photonic devices. Ceramics International, 2015, 41, 7146-7150.	4.8	42
96	Dependence of optical and electrical properties on Ag thickness in TiO2/Ag/TiO2 multilayer films for photovoltaic devices. Ceramics International, 2015, 41, 8059-8063.	4.8	37
97	ITO-free inverted organic solar cells fabricated with transparent and low resistance ZnO/Ag/ZnO multilayer electrode. Current Applied Physics, 2015, 15, 829-832.	2.4	17
98	Embedment of nano-sized Ag layer into Ag-doped In2O3 films for use as highly transparent and conductive anode in organic solar cells. Applied Surface Science, 2015, 347, 88-95.	6.1	13
99	Al-doped ZnO/Ag/Al-doped ZnO multilayer films with a high figure of merit. Ceramics International, 2015, 41, 14805-14810.	4.8	35
100	Formation of low resistance Ti/Al-based ohmic contacts on (11 \hat{a} e"22) semipolar n-type GaN. Journal of Alloys and Compounds, 2015, 652, 167-171.	5.5	8
101	Improving performance of high-power indium gallium nitride/gallium nitride-based vertical light-emitting diodes by employing simple n-type electrode pattern. Materials Science in Semiconductor Processing, 2015, 31, 209-213.	4.0	3
102	Optimizing n-type contact design and chip size for high-performance indium gallium nitride/gallium nitride-based thin-film vertical light-emitting diode. Materials Science in Semiconductor Processing, 2015, 31, 153-159.	4.0	18
103	Realization of highly transparent and low resistance TiO2/Ag/TiO2 conducting electrode for optoelectronic devices. Ceramics International, 2015, 41, 3064-3068.	4.8	31
104	Investigation of Fermi level pinning at semipolar (11 \hat{a} ="22") p-type GaN surfaces. Superlattices and Microstructures, 2015, 77, 76-81.	3.1	14
105	Morphological stability of Ag reflector for high-power GaN-based vertical light-emitting diode by addition of Ni layer. Superlattices and Microstructures, 2014, 73, 342-349.	3.1	8
106	Controlling interface oxygen for forming Ag ohmic contact to semi-polar (1 1 \hat{a}^2 2) plane p-type GaN. Superlattices and Microstructures, 2014, 75, 962-967.	3.1	2
107	Control of the preferred orientations of Cu(In,Ga)Se ₂ films and the photovoltaic conversion efficiency using a surfaceâ€functionalized molybdenum back contact. Progress in Photovoltaics: Research and Applications, 2014, 22, 69-76.	8.1	27
108	Polarity dependence of the electrical characteristics of Ag reflectors for high-power GaN-based light emitting diodes. Applied Physics Letters, 2014, 104, 172104.	3.3	3

#	Article	IF	Citations
109	Electrical properties of CIGS/Mo junctions as a function of MoSe ₂ orientation and Na doping. Progress in Photovoltaics: Research and Applications, 2014, 22, 90-96.	8.1	61
110	Delayed <111> texture for improving the thermal stability of Ag reflectors for high-performance GaN-based light-emitting diodes. Scripta Materialia, 2014, 80, 5-8.	5.2	9
111	Highly thermally stable Pd/Zn/Ag ohmic contact to Ga-face p-type GaN. Journal of Alloys and Compounds, 2014, 588, 327-331.	5.5	13
112	Effect of a Mo back contact on Na diffusion in CIGS thin film solar cells. Progress in Photovoltaics: Research and Applications, 2013, 21, 58-63.	8.1	69
113	Growth behavior of cubic boron nitride (cBN) phase in B-C-N film deposited on Si substrate with non-uniform ion flux. Metals and Materials International, 2013, 19, 591-595.	3.4	1
114	Effect of an In layer on the thermal stability of Ag reflector for vertical GaN-based light-emitting diodes. Superlattices and Microstructures, 2013, 56, 77-85.	3.1	14
115	Silver-induced activation for improving the electrical characteristics of GaN-based vertical light-emitting diodes. Current Applied Physics, 2013, 13, 377-380.	2.4	2
116	Dependence of thickness and temperature on the thermal stability of Ag films deposited on GaN layers for vertical-geometry GaN-based light-emitting diodes. Superlattices and Microstructures, 2013, 61, 160-167.	3.1	4
117	Optical, electrical, and structural properties of ZrON/Ag/ZrON multilayer transparent conductor for organic photovoltaics application. Superlattices and Microstructures, 2013, 62, 119-127.	3.1	14
118	Improving the output power of near-ultraviolet InGaN/GaN-based light emitting diodes by enhancing the thermal and electrical properties of Ag-based reflector. Superlattices and Microstructures, 2013, 64, 7-14.	3.1	4
119	Realizing the Potential of ZnO with Alternative Nonâ€Metallic Coâ€Dopants as Electrode Materials for Small Molecule Optoelectronic Devices. Advanced Functional Materials, 2013, 23, 3645-3652.	14.9	26
120	Effect of Different Quantum Well Structures on the Output Power Performance of GaN-Based Light-Emitting Diodes. Journal of Electronic Materials, 2013, 42, 2876-2880.	2.2	1
121	Effect of deposition temperature on cubic boron nitride thin film deposited by unbalanced magnetron sputtering method with a nanocrystalline diamond buffer layer. Metals and Materials International, 2013, 19, 1323-1326.	3.4	6
122	Plasmonic Au nanoparticles on 8 nm TiO2 nanotubes for enhanced photocatalytic water splitting. Journal of Renewable and Sustainable Energy, 2013, 5, .	2.0	17
123	Superhydrophilic Transparent Titania Films by Supersonic Aerosol Deposition. Journal of the American Ceramic Society, 2013, 96, 1596-1601.	3.8	31
124	Highly reliable Ag/Zn/Ag ohmic reflector for high-power GaN-based vertical light-emitting diode. Optics Express, 2012, 20, 19194.	3.4	21
125	Nanostructure Ag dots for improving thermal stability of Ag reflector for GaN-based light-emitting diodes. Applied Physics Letters, 2012, 101, 021115.	3.3	8
126	Improved light output power of GaN-based flip-chip light-emitting diode through SiO2 cones. Electronic Materials Letters, 2012, 8, 549-552.	2.2	9

#	Article	IF	Citations
127	Ga Ordering and Electrical Conductivity in Nanotwin and Superlattice-Structured Ga-Doped ZnO. Crystal Growth and Design, 2012, 12, 1167-1172.	3.0	20
128	Improved efficiency of InGaN/GaN-based multiple quantum well solar cells by reducing contact resistance. Superlattices and Microstructures, 2012, 52, 299-305.	3.1	12
129	Enhanced thermal stability of Ag ohmic reflector for InGaN/GaN light-emitting diode using a Ru capping layer. Superlattices and Microstructures, 2012, 52, 357-363.	3.1	3
130	Improving the thermal stability of Ag Ohmic contacts for GaN-based vertical light-emitting diodes with a Cu capping layer. Journal of the Korean Physical Society, 2012, 60, 857-861.	0.7	0
131	Tuning Hydrophobicity with Honeycomb Surface Structure and Hydrophilicity with <scp><scp>CF</scp>₄ Plasma Etching for Aerosolâ€Deposited Titania Films. Journal of the American Ceramic Society, 2012, 95, 3955-3961.</scp>	3.8	16
132	Fabrication of Patterned Magnetic Nanomaterials for Data Storage Media. Jom, 2012, 64, 1165-1173.	1.9	5
133	Electrical Characteristics of Ti/Al Ohmic Contacts to Molecular Beam Epitaxy-Grown N-polar n-type GaN for Vertical-Structure Light-Emitting Diodes. Journal of Electronic Materials, 2012, 41, 2145-2150.	2.2	1
134	Low-resistance Cr/Al Ohmic contacts to N-polar n-type GaN for high-performance vertical light-emitting diodes. Current Applied Physics, 2012, 12, 225-227.	2.4	3
135	Improved light output power of GaN-based light-emitting diodes by using Ag grids. Microelectronic Engineering, 2012, 95, 10-13.	2.4	3
136	Effect of TiO2 nanopatterns on the performance of hydrogenated amorphous silicon thin-film solar cells. Thin Solid Films, 2012, 520, 6287-6290.	1.8	1
137	Highly Reliable Ohmic Contacts to N-Polar n-Type GaN for High-Power Vertical Light-Emitting Diodes. IEEE Photonics Technology Letters, 2011, 23, 1784-1786.	2.5	5
138	Highly self-assembled nanotubular aluminum oxide by hard anodization. Journal of Materials Research, 2011, 26, 186-193.	2.6	16
139	Improved Electrostatic Discharge Protection in GaN-Based Vertical Light-Emitting Diodes by an Internal Diode. IEEE Photonics Technology Letters, 2011, 23, 423-425.	2.5	3
140	Preparation and characterization of electro-spun RuO2â€"Ag2O composite nanowires for electrochemical capacitors. Journal of Alloys and Compounds, 2011, 509, 4336-4340.	5.5	29
141	Fabrication and Magnetic Properties of Nonmagnetic Ion Implanted Magnetic Recording Films for Bit-Patterned Media. IEEE Transactions on Magnetics, 2011, 47, 2532-2535.	2.1	6
142	Depth-resolved correlation between physical and electrical properties of stressed SiNx gate insulator films. Journal of Electroceramics, 2011, 26, 63-67.	2.0	4
143	Electrical characteristics of Cu-doped In2O3/Sb-doped SnO2 ohmic contacts for high-performance GaN-based light-emitting diodes. Journal of Electroceramics, 2011, 27, 109-113.	2.0	4
144	Improved Light Output of GaN-Based Light-Emitting Diodes by Using AgNi Reflective Contacts. Journal of Electronic Materials, 2011, 40, 2173-2178.	2.2	0

#	Article	IF	CITATIONS
145	Growth of amorphous silica nanowires using nickel silicide catalyst by a thermal annealing process. Current Applied Physics, 2011, 11, 199-202.	2.4	6
146	GUIDED NANOSTRUCTURES USING ANODIZED ALUMINUM OXIDE TEMPLATES. Nano, 2011, 06, 541-555.	1.0	18
147	Ohmic-Contact Technology for GaN-Based Light-Emitting Diodes: Role of P-Type Contact. IEEE Transactions on Electron Devices, 2010, 57, 42-59.	3.0	140
148	Epitaxial growth of Cr2O3 thin film on Al2O3 (0001) substrate by radio frequency magnetron sputtering combined with rapid-thermal annealing. Thin Solid Films, 2010, 518, 4813-4816.	1.8	35
149	Electrical Transport Phenomena of Single ZnO Nanowire Device Directly Measured Using Nano Manipulator. Materials Research Society Symposia Proceedings, 2010, 1258, 1.	0.1	O
150	Formation of low-resistance Ohmic contacts to N-face n-GaN for high-power GaN-based vertical light-emitting diodes. Applied Physics Letters, 2010, 97, 092103.	3.3	20
151	Effect of the Mo back contact microstructure on the preferred orientation of CIGS thin films. , 2010, , .		16
152	Insights into the reactive ion etching mechanism of nanocrystalline diamond films as a function of film microstructure and the presence of fluorine gas. Journal of Applied Physics, 2010, 107, 044313.	2.5	3
153	Thermally stable and low-resistance W/Ti/Au contacts to n-type GaN. Journal of Materials Science: Materials in Electronics, 2009, 20, 9-13.	2.2	3
154	Improved electrical and thermal properties of Ag contacts for GaN-based flip-chip light-emitting diodes by using a NiZn alloy capping layer. Superlattices and Microstructures, 2009, 46, 578-584.	3.1	8
155	Three-dimensional nanostructured carbon nanotube array/PtRu nanoparticle electrodes for micro-fuel cells. Electrochemistry Communications, 2009, 11, 635-638.	4.7	23
156	Electrical Characteristics of Metal Contacts to Laser-Irradiated N-Polar n-Type GaN. IEEE Electron Device Letters, 2009, 30, 319-321.	3.9	7
157	Co-sputtering growth and electro-oxidation properties of Pt–CuO nanocomposites for direct methanol thin film fuel cells. Journal of Alloys and Compounds, 2009, 471, L39-L42.	5.5	12
158	TiN/Al Ohmic contacts to N-face n-type GaN for high-performance vertical light-emitting diodes. Applied Physics Letters, 2009, 94, .	3.3	58
159	Wafer-level fabrication of GaN-based vertical light-emitting diodes using a multi-functional bonding material system. Semiconductor Science and Technology, 2009, 24, 092001.	2.0	38
160	Ordered domain structures of nitrogen-doped GalnP layers grown by organometallic vapor phase epitaxy. Journal of Materials Science: Materials in Electronics, 2008, 19, 1092-1096.	2.2	0
161	Co(OH)2-combined carbon-nanotube array electrodes for high-performance micro-electrochemical capacitors. Electrochemistry Communications, 2008, 10, 1284-1287.	4.7	51
162	Electrical characteristics of contacts to thin film N-polar n-type GaN. Applied Physics Letters, 2008, 93,	3.3	65

#	Article	IF	Citations
163	Leakage current origins and passivation effect of GaN-based light emitting diodes fabricated with Ag p-contacts. Applied Physics Letters, 2008, 92, .	3.3	26
164	High-Efficiency GaN-Based Light-Emitting Diodes Fabricated With Metallic Hybrid Reflectors. IEEE Electron Device Letters, 2008, 29, 582-584.	3.9	8
165	Possible Ohmic Mechanisms of Ag/Indium Tin Oxide p-Type Contacts for High-Brightness GaN-Based Light Emitting Diodes. Electrochemical and Solid-State Letters, 2008, 11, H36.	2.2	13
166	Light extraction enhancement of GaN-based light emitting diodes using MgF2/Al omnidirectional reflectors. Journal of Applied Physics, 2008, 104, 053111.	2.5	20
167	Metallization contacts to nonpolar a-plane n-type GaN. Applied Physics Letters, 2008, 93, 032105.	3.3	47
168	Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry. Applied Physics Letters, 2007, 91, .	3.3	83
169	Measurements of current spreading length and design of GaN-based light emitting diodes. Applied Physics Letters, 2007, 90, 063510.	3.3	39
170	Enhanced light extraction of GaN-based light-emitting diodes by using textured n-type GaN layers. Applied Physics Letters, 2007, 90, 161110.	3.3	38
171	Consideration of the Actual Current-Spreading Length of GaN-Based Light-Emitting Diodes for High-Efficiency Design. IEEE Journal of Quantum Electronics, 2007, 43, 625-632.	1.9	32
172	High-Reflectance and Thermally Stable AgCu Alloy p-Type Reflectors for GaN-Based Light-Emitting Diodes. IEEE Photonics Technology Letters, 2007, 19, 336-338.	2.5	57
173	Enhanced Light Output of GaN-Based Light-Emitting Diodes by Using Omnidirectional Sidewall Reflectors. IEEE Photonics Technology Letters, 2007, 19, 1562-1564.	2.5	11
174	Formation of low-resistance and transparent indium tin oxide ohmic contact for high-brightness GaN-based light-emitting diodes using a Sn–Ag interlayer. Materials Science in Semiconductor Processing, 2007, 10, 211-214.	4.0	12
175	Recovery of dry etch-induced damage of nano-patterned GaN-based light-emitting diodes by rapid-thermal-annealing. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 881-886.	1.8	11
176	Enhancement of the light output of GaN-based light-emitting diodes with surface-patterned ITO electrodes by maskless wet-etching. Solid-State Electronics, 2007, 51, 793-796.	1.4	51
177	Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process. Applied Physics Letters, 2006, 88, 103505.	3.3	52
178	Schottky barrier characteristics of Pt contacts to n-type InGaN. Journal of Applied Physics, 2006, 99, 073704.	2.5	63
179	Low turn-on voltage and series resistance of polarization-induced InGaN-GaN LEDs by using p-InGaN/p-GaN superlattice. IEEE Photonics Technology Letters, 2006, 18, 1536-1538.	2.5	17
180	High quality tin zinc oxide/Ag ohmic contacts for UV flip-chip light-emitting diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2133-2136.	0.8	1

#	Article	IF	CITATIONS
181	Formation of low resistance nonalloyed ohmic contacts to p-type GaN by KrF laser irradiation. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1717-1720.	0.8	o
182	Low resistance and highly reflective ohmic contacts top -type GaN using transparent interlayers for flip-chip light emitting diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2207-2210.	0.8	0
183	Ir/Ag reflector for high-performance GaN-based near UV light emitting diodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 133, 26-29.	3.5	9
184	Characteristics of Pt Schottky contacts on hydrogen peroxide-treated n-type ZnO(0001) layers. Superlattices and Microstructures, 2006, 39, 211-217.	3.1	10
185	Electrical properties of nonalloyed Ni/Au ohmic contacts to laser-irradiated p-GaN. Journal of Materials Science: Materials in Electronics, 2006, 17, 831-834.	2.2	1
186	Ni implantation-induced enhancement of the crystallisation of amorphous Si. Journal of Materials Science: Materials in Electronics, 2006, 17, 979-985.	2.2	1
187	Improvement of the reverse leakage behavior of Ag-based ohmic contacts for GaN-based light-emitting diodes using MgZnO interlayer. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 129, 176-179.	3.5	4
188	GaN-based Light Emitting Diode with Transparent Nanoparticles-Embedded p-Ohmic Electrodes. Materials Research Society Symposia Proceedings, 2005, 892, 335.	0.1	0
189	Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes. Applied Physics Letters, 2005, 86, 183503.	3.3	122
190	Ohmic and degradation mechanisms of Ag contacts on p-type GaN. Applied Physics Letters, 2005, 86, 062104.	3.3	115
191	Low-resistance Al-based reflectors for high-power GaN-based flip-chip light-emitting diodes. Applied Physics Letters, 2005, 86, 133503.	3.3	23
192	Light-output enhancement of GaN-based light-emitting diodes by using hole-patterned transparent indium tin oxide electrodes. Journal of Applied Physics, 2005, 98, 076107.	2.5	33
193	Pt/Indium Tin Oxide Ohmic Contacts to Arsenic-Doped p-Type ZnO Layers. Electrochemical and Solid-State Letters, 2005, 8, G167.	2.2	13
194	Improvement of the light output of InGaN-based light-emitting diodes using Cu-doped indium oxide/indium tin oxide p-type electrodes. Applied Physics Letters, 2005, 86, 213505.	3.3	56
195	Low Resistance and High Reflectance Pt/Rh Contacts to p-Type GaN for GaN-Based Flip Chip Light-Emitting Diodes. Journal of the Electrochemical Society, 2005, 152, G92.	2.9	30
196	Cu-doped indium oxideâ^•Ag ohmic contacts for high-power flip-chip light-emitting diodes. Applied Physics Letters, 2005, 86, 062103.	3.3	52
197	Improvement of the luminous intensity of light-emitting diodes by using highly transparent Ag-indium tin oxide p-type ohmic contacts. IEEE Photonics Technology Letters, 2005, 17, 291-293.	2.5	57
198	Enhancement of phase separation in the InGaN layer for self-assembled In-rich quantum dots. Applied Physics Letters, 2005, 87, 061906.	3.3	55

#	Article	IF	CITATIONS
199	Interfacial reaction effect on the ohmic properties of a Pt/Pd/Au contact onp-type GaN. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1101-1104.	2.1	13
200	Low resistance and transparent Ni–La solid solution/Au ohmic contacts to p-type GaN. Applied Physics Letters, 2004, 84, 1504-1506.	3.3	13
201	Highly transparent Agâ^•SnO2 ohmic contact to p-type GaN for ultraviolet light-emitting diodes. Applied Physics Letters, 2004, 85, 6374-6376.	3.3	56
202	Electrical and structural properties of low-resistance Ti/Al/Re/Au ohmic contacts to n-type GaN. Journal of Electronic Materials, 2004, 33, 395-399.	2.2	12
203	Formation of thermally stable Ni monosilicide using an inductively coupled plasma process. Journal of Electronic Materials, 2004, 33, 916-922.	2.2	2
204	Low resistance and highly reflective Cu–Ni solid solution/Ag ohmic contacts to p-GaN for flip-chip light emitting diodes. Physica Status Solidi A, 2004, 201, 2823-2826.	1.7	4
205	Nano-dot addition effect on the electrical properties of Ni contacts to p-type GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2524-2527.	0.8	10
206	Fabrication of ZnO quantum dots embedded in an amorphous oxide layer. Applied Physics Letters, 2004, 84, 3810-3812.	3.3	104
207	Low Resistance and Reflective Mg-Doped Indium Oxide–Ag Ohmic Contacts for Flip-Chip Light-Emitting Diodes. IEEE Photonics Technology Letters, 2004, 16, 1450-1452.	2.5	65
208	Low-resistance and transparent ohmic contacts to p-type GaN using Zn–Ni solid solution/Au scheme. Applied Physics Letters, 2004, 84, 4663-4665.	3.3	16
209	Charge-discharge induced phase transformation of RuO2 electrode for thin film supercapacitor. Metals and Materials International, 2003, 9, 239-246.	3.4	8
210	Formation of nickel disilicide using nickel implantation and rapid thermal annealing. Journal of Electronic Materials, 2003, 32, 1072-1078.	2.2	6
211	Growth of crack-free high-quality GaN on $Si(111)$ using a low-temperature AlN interlayer: observation of tilted domain structures in the AlN interlayer. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2150-2153.	0.8	5
212	High-quality nonalloyed rhodium-based ohmic contacts to p-type GaN. Applied Physics Letters, 2003, 83, 2372-2374.	3.3	30
213	Low-resistance and highly-reflective Zn–Ni solid solution/Ag ohmic contacts for flip-chip light-emitting diodes. Applied Physics Letters, 2003, 83, 4990-4992.	3.3	56
214	Formation of vanadium-based ohmic contacts to n-GaN. Applied Physics Letters, 2003, 83, 1154-1156.	3.3	33
215	Highly low resistance and transparent Ni/ZnO ohmic contacts to p-type GaN. Applied Physics Letters, 2003, 83, 479-481.	3.3	89
216	Formation of low resistance and transparent ohmic contacts to p-type GaN using Ni–Mg solid solution. Applied Physics Letters, 2003, 83, 3513-3515.	3.3	59

#	Article	IF	Citations
217	Effects of sulfur passivation on Ti/Al ohmic contacts to n-type GaN using CH3CSNH2 solution. Applied Physics Letters, 2002, 80, 3129-3131.	3.3	36
218	Abnormal junction profile of silicided p/sup $+$ //n shallow junctions: a leakage mechanism. IEEE Electron Device Letters, 2002, 23, 188-190.	3.9	11
219	A study of stress-induced p/sup +//n salicided junction leakage failure and optimized process conditions for sub-0.15- $\hat{1}$ /4m CMOS technology. IEEE Transactions on Electron Devices, 2002, 49, 1985-1992.	3.0	16
220	Low-resistance and thermally stable Pd/Ru ohmic contacts to p-type GaN. Journal of Electronic Materials, 2002, 31, 903-906.	2.2	12
221	Growth behavior of carbon nanotubes on Fe-deposited (001) Si substrates. Applied Physics Letters, 2001, 78, 3130-3132.	3.3	51
222	Effects of Fe film Thickness and Ammonia on the Growth Behavior of Carbon Nanotubes grown by thermal Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	3
223	Thermally stable Nb and Nb/Au ohmic contacts to p-GaN. Journal of Electronic Materials, 2001, 30, 266-270.	2.2	6
224	Structural properties of GaAsN grown on (001) GaAs by metalorganic molecular beam epitaxy. Journal of Electronic Materials, 2001, 30, 900-906.	2.2	3
225	Electrical characteristics of thermally stable Ru and Ru/Au ohmic contacts to surface-treated p-type GaN. Journal of Electronic Materials, 2001, 30, 94-98.	2.2	5
226	Effects of thermal and hydrogen treatment on indium segregation in InGaN/GaN multiple quantum wells. Journal of Applied Physics, 2001, 89, 6514-6518.	2.5	80
227	Growth of high-quality GaN on Si(111) substrate by ultrahigh vacuum chemical vapor deposition. Applied Physics Letters, 2001, 78, 2858-2860.	3.3	64
228	Lateral composition modulation in GaP/InP short-period superlattices grown by solid source molecular beam epitaxy. Journal of Applied Physics, 2001, 90, 5086-5089.	2.5	16
229	Electrical characteristics of ZrOxNy prepared by NH3 annealing of ZrO2. Applied Physics Letters, 2001, 79, 245-247.	3.3	91
230	High Quality Non-Alloyed Pt Ohmic Contacts to <i>P</i> Type GaN Using Two-Step Surface Treatment. MRS Internet Journal of Nitride Semiconductor Research, 2000, 5, 521-527.	1.0	0
231	Ultra - Shallow p+/n Junction Formed by Plasma Ion Implantation. Materials Research Society Symposia Proceedings, 2000, 610, 371.	0.1	1
232	Full Color Luminescence from Amorphous Silicon Quantum Dots Embedded in Silion Nitride. Materials Research Society Symposia Proceedings, 2000, 638, 1.	0.1	1
233	Low Resistance and Thermally Stable Pt/Ru Ohmic Contacts to p-Type GaN. Physica Status Solidi A, 2000, 180, 103-107.	1.7	3
234	Mechanisms for the reduction of the Schottky barrier heights of high-quality nonalloyed Pt contacts on surface-treated p-GaN. Journal of Applied Physics, 2000, 88, 3064-3066.	2.5	68

#	Article	IF	CITATIONS
235	Electronic transport mechanisms of nonalloyed Pt Ohmic contacts to p-GaN. Applied Physics Letters, 2000, 76, 2743-2745.	3.3	71
236	Ultrahigh transparency of Ni/Au ohmic contacts to surface-treated p-type GaN. Journal of Applied Physics, 2000, 88, 5490-5492.	2.5	21
237	Growth and characterization of hypothetical zinc-blende ZnO films on GaAs(001) substrates with ZnS buffer layers. Applied Physics Letters, 2000, 76, 550-552.	3.3	188
238	Metallization scheme for highly low-resistance, transparent, and thermally stable Ohmic contacts to p-GaN. Applied Physics Letters, 2000, 76, 2898-2900.	3.3	61
239	Structural Study of GaN(As,P) Layers Grown on (0001) GaN by Gas Source Molecular Beam Epitaxy. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 167-172.	1.0	0
240	Formation of low resistance Pt ohmic contacts to p-type GaN using two-step surface treatment. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 2667.	1.6	117
241	Structural study of GaN grown on (001) GaAs by organometallic vapor phase epitaxy. Journal of Electronic Materials, 1999, 28, 873-877.	2.2	6
242	Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN. Applied Physics Letters, 1999, 74, 70-72.	3.3	153
243	High Quality Non-Alloyed Pt Ohmic Contacts to P-Type GaN Using Two-Step Surface Treatment. Materials Research Society Symposia Proceedings, 1999, 595, 1.	0.1	O
244	Diffuse diffracted features and ordered domain structures in GalnP layers grown by organometallic vapor phase epitaxy. Journal of Electronic Materials, 1998, 27, 1117-1123.	2.2	9
245	Structural and optical properties of GaxIn1â^'xP layers grown by chemical beam epitaxy. Journal of Electronic Materials, 1998, 27, 409-413.	2.2	8
246	Morphology and defect structures of GaSb islands on GaAs grown by metalorganic vapor phase epitaxy. Journal of Electronic Materials, 1998, 27, 466-471.	2.2	29
247	Structural Study of GaN(As,P) Layers Grown on (0001) GaN by Gas Source Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	O
248	Effects of V/III ratio on ordering and antiphase boundaries in GaInP layers. Applied Physics Letters, 1997, 70, 3137-3139.	3.3	19
249	The Effect Of The Nucleation Layer On The Low Temperature Growth Of Gan Using A Remote Plasma Enhanced – Ultrahigh Vacuum Chemical Vapor Deposition (RPE-UHVCVD). Materials Research Society Symposia Proceedings, 1997, 482, 175.	0.1	0
250	Atomie Force Microscope Study of Two-Dimensional Dopant Delineation by Selective Chemical Etching. Materials Research Society Symposia Proceedings, 1997, 490, 53.	0.1	0
251	Growth characteristics of ZnO nanowires on silicon, sapphire and GaN substrates., 0,,.		0
252	Formation of high quality ohmic contacts to p-GaN using metal/transparent conducting oxides. , 0, , .		0

#	Article	IF	CITATIONS
253	Unprecedentedly Large Photocurrents in Colloidal PbS Quantum-Dot Solar Cells Enabled by Atomic Layer Deposition of Zinc Oxide Electron Buffer Layer. ACS Applied Energy Materials, 0, , .	5.1	5