Carol Anne Munro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7545126/publications.pdf

Version: 2024-02-01

46984 48277 11,051 95 47 88 citations h-index g-index papers 123 123 123 9931 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Population genetics and microevolution of clinical <i>Candida glabrata</i> reveals recombinant sequence types and hyper-variation within mitochondrial genomes, virulence genes, and drug targets. Genetics, 2022, 221, .	1.2	11
2	Monoclonal Antibodies Targeting Surface-Exposed Epitopes of Candida albicans Cell Wall Proteins Confer <i>In Vivo</i> Protection in an Infection Model. Antimicrobial Agents and Chemotherapy, 2022, 66, e0195721.	1.4	4
3	Biomarkers of caspofungin resistance in <i>Candida albicans</i> isolates: A proteomic approach. Virulence, 2022, 13, 1005-1018.	1.8	6
4	Yeast pathogenesis and drug resistance: the beauty of the BYeast. FEMS Yeast Research, 2022, 22, .	1.1	0
5	Virulence traits and differential translocation of gut-derived Candida albicans. Access Microbiology, 2022, 4, .	0.2	O
6	The impact of the Fungus-Host-Microbiota interplay upon <i>Candida albicans</i> infections: current knowledge and new perspectives. FEMS Microbiology Reviews, 2021, 45, .	3.9	139
7	Fungal cell wall: An underexploited target for antifungal therapies. PLoS Pathogens, 2021, 17, e1009470.	2.1	42
8	Preliminary Characterization of NP339, a Novel Polyarginine Peptide with Broad Antifungal Activity. Antimicrobial Agents and Chemotherapy, 2021, 65, e0234520.	1.4	10
9	Fungal Cell Wall Proteins and Signaling Pathways Form a Cytoprotective Network to Combat Stresses. Journal of Fungi (Basel, Switzerland), 2021, 7, 739.	1.5	24
10	Neutralisation of SARSâ€CoVâ€2 by anatomical embalming solutions. Journal of Anatomy, 2021, 239, 1221-1225.	0.9	5
11	Monoclonal Human Antibodies That Recognise the Exposed N and C Terminal Regions of the Often-Overlooked SARS-CoV-2 ORF3a Transmembrane Protein. Viruses, 2021, 13, 2201.	1.5	4
12	Complement-Mediated Differential Immune Response of Human Macrophages to Sporothrix Species Through Interaction With Their Cell Wall Peptidorhamnomannans. Frontiers in Immunology, 2021, 12, 749074.	2.2	9
13	Caspofungin Induced Cell Wall Changes of Candida Species Influences Macrophage Interactions. Frontiers in Cellular and Infection Microbiology, 2020, 10, 164.	1.8	32
14	Host Responses in an Ex Vivo Human Skin Model Challenged With Malassezia sympodialis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 561382.	1.8	8
15	Inhibition of Classical and Alternative Modes of Respiration in <i>Candida albicans</i> Leads to Cell Wall Remodeling and Increased Macrophage Recognition. MBio, 2019, 10, .	1.8	53
16	The potential of respiration inhibition as a new approach to combat human fungal pathogens. Current Genetics, 2019, 65, 1347-1353.	0.8	35
17	High Resolution Respirometry in Candida albicans. Bio-protocol, 2019, 9, e3361.	0.2	2
18	Mitogen activated protein kinases (MAPK) and protein phosphatases are involved in Aspergillus fumigatus adhesion and biofilm formation. Cell Surface, 2018, 1, 43-56.	1.5	20

#	Article	IF	Citations
19	Hypoxia Promotes Immune Evasion by Triggering \hat{l}^2 -Glucan Masking on the Candida albicans Cell Surface via Mitochondrial and cAMP-Protein Kinase A Signaling. MBio, 2018, 9, .	1.8	105
20	Defects in intracellular trafficking of fungal cell wall synthases lead to aberrant host immune recognition. PLoS Pathogens, 2018, 14, e1007126.	2.1	44
21	Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microbial Cell, 2018, 5, 300-326.	1.4	81
22	Systematic gene overexpression in <i>Candida albicans</i> iiiiiies a regulator of early adaptation to the mammalian gut. Cellular Microbiology, 2018, 20, e12890.	1.1	50
23	Generating genomic platforms to study Candida albicans pathogenesis. Nucleic Acids Research, 2018, 46, 6935-6949.	6.5	30
24	Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers. PLoS Neglected Tropical Diseases, 2018, 12, e0006169.	1.3	56
25	Unlocking the Therapeutic Potential of the Fungal Cell Wall: Clinical Implications and Drug Resistance., 2017,, 313-346.		5
26	Rim Pathway-Mediated Alterations in the Fungal Cell Wall Influence Immune Recognition and Inflammation. MBio, 2017, 8, .	1.8	42
27	The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiology Spectrum, 2017, 5, .	1.2	736
28	Lactate signalling regulates fungal \hat{l}^2 -glucan masking and immune evasion. Nature Microbiology, 2017, 2, 16238.	5.9	197
29	Sfp1 and Rtg3 reciprocally modulate carbon sourceâ€conditional stress adaptation in the pathogenic yeastCandida albicans. Molecular Microbiology, 2017, 105, 620-636.	1.2	21
30	Elevated catalase expression in a fungal pathogen is a double-edged sword of iron. PLoS Pathogens, 2017, 13, e1006405.	2.1	43
31	A Prospective Surveillance Study of Candidaemia: Epidemiology, Risk Factors, Antifungal Treatment and Outcome in Hospitalized Patients. Frontiers in Microbiology, 2016, 7, 915.	1.5	60
32	Integrating Candida albicans metabolism with biofilm heterogeneity by transcriptome mapping. Scientific Reports, 2016, 6, 35436.	1.6	39
33	Virulence profile: Carol Munro. Virulence, 2016, 7, 729-731.	1.8	0
34	Contribution of Fdh3 and Glr1 to Glutathione Redox State, Stress Adaptation and Virulence in Candida albicans. PLoS ONE, 2015, 10, e0126940.	1.1	35
35	The Aspergillus fumigatus sitA Phosphatase Homologue Is Important for Adhesion, Cell Wall Integrity, Biofilm Formation, and Virulence. Eukaryotic Cell, 2015, 14, 728-744.	3.4	66
36	Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance. MBio, 2015, 6, e00986.	1.8	169

#	Article	IF	Citations
37	Caspofungin Treatment of Aspergillus fumigatus Results in ChsG-Dependent Upregulation of Chitin Synthesis and the Formation of Chitin-Rich Microcolonies. Antimicrobial Agents and Chemotherapy, 2015, 59, 5932-5941.	1.4	66
38	The pH-Responsive PacC Transcription Factor of Aspergillus fumigatus Governs Epithelial Entry and Tissue Invasion during Pulmonary Aspergillosis. PLoS Pathogens, 2014, 10, e1004413.	2.1	151
39	Targeted Changes of the Cell Wall Proteome Influence Candida albicans Ability to Form Single- and Multi-strain Biofilms. PLoS Pathogens, 2014, 10, e1004542.	2.1	54
40	Candida albicans Hypha Formation and Mannan Masking of \hat{l}^2 -Glucan Inhibit Macrophage Phagosome Maturation. MBio, 2014, 5, e01874.	1.8	138
41	<i>O</i> -Mannosylation in Candida albicans Enables Development of Interkingdom Biofilm Communities. MBio, 2014, 5, e00911.	1.8	64
42	Extracellular DNA release confers heterogeneity in Candida albicans biofilm formation. BMC Microbiology, 2014, 14, 303.	1.3	53
43	Modulation of Alternaria infectoria Cell Wall Chitin and Glucan Synthesis by Cell Wall Synthase Inhibitors. Antimicrobial Agents and Chemotherapy, 2014, 58, 2894-2904.	1.4	28
44	Carbon Metabolism in Pathogenic Yeasts (Especially Candida): The Role of Cell Wall Metabolism in Virulence., 2014,, 141-167.		0
45	Determination of chitin content in fungal cell wall: An alternative flow cytometric method. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2013, 83A, 324-328.	1.1	47
46	Chitin and Glucan, the Yin and Yang of the Fungal Cell Wall, Implications for Antifungal Drug Discovery and Therapy. Advances in Applied Microbiology, 2013, 83, 145-172.	1.3	62
47	Elevated Chitin Content Reduces the Susceptibility of Candida Species to Caspofungin. Antimicrobial Agents and Chemotherapy, 2013, 57, 146-154.	1.4	156
48	Genomic Insights into the Atopic Eczema-Associated Skin Commensal Yeast <i>Malassezia sympodialis</i> . MBio, 2013, 4, e00572-12.	1.8	118
49	Differential Adaptation of Candida albicans In Vivo Modulates Immune Recognition by Dectin-1. PLoS Pathogens, 2013, 9, e1003315.	2.1	181
50	Cell wall stress induces alternative fungal cytokinesis and septation strategies. Journal of Cell Science, 2013, 126, 2668-77.	1.2	36
51	Anti-Candida Targets and Cytotoxicity of Casuarinin Isolated from Plinia cauliflora Leaves in a Bioactivity-Guided Study. Molecules, 2013, 18, 8095-8108.	1.7	16
52	Hsp90 Orchestrates Transcriptional Regulation by Hsf1 and Cell Wall Remodelling by MAPK Signalling during Thermal Adaptation in a Pathogenic Yeast. PLoS Pathogens, 2012, 8, e1003069.	2.1	102
53	Elevated Cell Wall Chitin in Candida albicans Confers Echinocandin Resistance <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2012, 56, 208-217.	1.4	181
54	The Evolutionary Rewiring of Ubiquitination Targets Has Reprogrammed the Regulation of Carbon Assimilation in the Pathogenic Yeast Candida albicans. MBio, 2012, 3, .	1.8	102

#	Article	IF	Citations
55	Echinocandin resistance in human pathogenic fungi. Expert Review of Anti-Infective Therapy, 2012, 10, 115-116.	2.0	8
56	Echinocandin resistance due to simultaneous FKS mutation and increased cell wall chitin in a Candida albicans bloodstream isolate following brief exposure to caspofungin. Journal of Medical Microbiology, 2012, 61, 1330-1334.	0.7	34
57	Carbon sourceâ€induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen ⟨scp⟩⟨i⟩C⟨ i⟩⟨ scp⟩⟨i⟩andida albicans⟨ i⟩. Proteomics, 2012, 12, 3164-3179.	1.3	142
58	Isolation and functional characterization of Sporothrix schenckii ROT2, the encoding gene for the endoplasmic reticulum glucosidase II. Fungal Biology, 2012, 116, 910-918.	1.1	23
59	Modular Gene Over-expression Strategies for Candida albicans. Methods in Molecular Biology, 2012, 845, 227-244.	0.4	18
60	Recognition and Blocking of Innate Immunity Cells by Candida albicans Chitin. Infection and Immunity, 2011, 79, 1961-1970.	1.0	172
61	Reverse Genetics in Candida albicans Predicts ARF Cycling Is Essential for Drug Resistance and Virulence. PLoS Pathogens, 2010, 6, e1000753.	2.1	51
62	Phosphorylation regulates polarisation of chitin synthesis in Candida albicans. Journal of Cell Science, 2010, 123, 2199-2206.	1.2	33
63	Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans. Microbiology (United Kingdom), 2010, 156, 1476-1486.	0.7	73
64	Chitin synthesis and fungal pathogenesis. Current Opinion in Microbiology, 2010, 13, 416-423.	2.3	363
65	Fungal echinocandin resistance. Fungal Genetics and Biology, 2010, 47, 117-126.	0.9	228
66	Melanin Externalization in Candida albicans Depends on Cell Wall Chitin Structures. Eukaryotic Cell, 2010, 9, 1329-1342.	3.4	85
67	Candida albicans Cell Wall Mediated Virulence. , 2010, , 69-95.		2
68	Fungal echinocandin resistance. F1000 Biology Reports, 2010, 2, 66.	4.0	10
69	Property Differences among the Four Major <i>Candida albicans</i> Strain Clades. Eukaryotic Cell, 2009, 8, 373-387.	3.4	138
70	Dissection of the Candida albicans class I chitin synthase promoters. Molecular Genetics and Genomics, 2009, 281, 459-71.	1.0	30
71	Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 2009, 459, 657-662.	13.7	963
72	Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461, 393-398.	13.7	1,405

#	Article	IF	Citations
73	Comparative genomics of the fungal pathogens <i>Candida dubliniensis</i> and <i>Candida albicans</i> . Genome Research, 2009, 19, 2231-2244.	2.4	195
74	Generating cell surface diversity in <i>Candida albicans</i> Microbiology Letters, 2008, 285, 137-145.	0.7	44
75	Functional analysis of Candida albicans GPI-anchored proteins: Roles in cell wall integrity and caspofungin sensitivity. Fungal Genetics and Biology, 2008, 45, 1404-1414.	0.9	212
76	Stimulation of Chitin Synthesis Rescues Candida albicans from Echinocandins. PLoS Pathogens, 2008, 4, e1000040.	2.1	351
77	Immune Recognition of <i>Candida albicans</i> i>βâ€glucan by Dectinâ€1. Journal of Infectious Diseases, 2007, 196, 1565-1571.	1.9	277
78	The PKC, HOG and Ca2+signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Molecular Microbiology, 2007, 63, 1399-1413.	1.2	285
79	Individual chitin synthase enzymes synthesize microfibrils of differing structure at specific locations in the <i>Candida albicans</i>	1.2	79
80	Outer Chain N-Glycans Are Required for Cell Wall Integrity and Virulence of Candida albicans. Journal of Biological Chemistry, 2006, 281, 90-98.	1.6	214
81	Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. Journal of Clinical Investigation, 2006, 116, 1642-1650.	3.9	632
82	A Human-Curated Annotation of the Candida albicans Genome. PLoS Genetics, 2005, 1, e1.	1.5	293
83	Mnt1p and Mnt2p of Candida albicans Are Partially Redundant α-1,2-Mannosyltransferases That Participate in O-Linked Mannosylation and Are Required for Adhesion and Virulence. Journal of Biological Chemistry, 2005, 280, 1051-1060.	1.6	173
84	Candida albicans Pmr1p, a Secretory Pathway P-type Ca2+/Mn2+-ATPase, Is Required for Glycosylation and Virulence. Journal of Biological Chemistry, 2005, 280, 23408-23415.	1.6	167
85	Independent regulation of chitin synthase and chitinase activity in Candida albicans and Saccharomyces cerevisiae. Microbiology (United Kingdom), 2004, 150, 921-928.	0.7	87
86	Candida albicans mutants in the BNI4 gene have reduced cell-wall chitin and alterations in morphogenesis. Microbiology (United Kingdom), 2004, 150, 3243-3252.	0.7	11
87	Loss of Cell Wall Mannosylphosphate in Candida albicans Does Not Influence Macrophage Recognition. Journal of Biological Chemistry, 2004, 279, 39628-39635.	1.6	123
88	Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Molecular Microbiology, 2004, 39, 1414-1426.	1.2	130
89	CHS8—a fourth chitin synthase gene of Candida albicans contributes to in vitro chitin synthase activity, but is dispensable for growth. Fungal Genetics and Biology, 2003, 40, 146-158.	0.9	74
90	The zygomycetous fungus, Benjaminiella poitrasii contains a large family of differentially regulated chitin synthase genes. Fungal Genetics and Biology, 2002, 36, 215-223.	0.9	22

#	Article	IF	CITATIONS
91	Anti-fungal therapy at the HAART of viral therapy. Trends in Microbiology, 2002, 10, 173-177.	3.5	54
92	Influence of the rumen anaerobic fungus Neocallimastix frontalis on the proteolytic activity of a defined mixture of rumen bacteria growing on a solid substrate. Letters in Applied Microbiology, 1986, 3, 23-26.	1.0	28
93	The Fungal Cell Wall: Structure, Biosynthesis, and Function. , 0, , 267-292.		65
94	The Cell Wall: Glycoproteins, Remodeling, and Regulation. , 0, , 195-223.		5
95	Cool Tools 5: The Candida albicans ORFeome Project. , 0, , 505-510.		1