Alessandra Rinaldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7545124/publications.pdf Version: 2024-02-01

ALESSANDRA RINALDI

#	Article	IF	CITATIONS
1	Alternative fining of Sangiovese wine: effect on phenolic substances and sensory characteristics. Australian Journal of Grape and Wine Research, 2021, 27, 128-137.	2.1	4
2	Differences in Astringency Subqualities Evaluated by Consumers and Trained Assessors on Sangiovese Wine Using Check-All-That-Apply (CATA). Foods, 2021, 10, 218.	4.3	13
3	Commercial Mannoproteins Improve the Mouthfeel and Colour of Wines Obtained by Excessive Tannin Extraction. Molecules, 2021, 26, 4133.	3.8	9
4	Effect of oxidation on color parameters, tannins, and sensory characteristics of Sangiovese wines. European Food Research and Technology, 2021, 247, 2977-2991.	3.3	10
5	Effect of Chitosan on the Removal of Different Types of Tannins from Red Wines. Applied Sciences (Switzerland), 2021, 11, 11743.	2.5	1
6	Effect of marc pressing and geographical area on Sangiovese wine quality. LWT - Food Science and Technology, 2020, 118, 108728.	5.2	10
7	Effect of Different Enological Tannins on Oxygen Consumption, Phenolic Compounds, Color and Astringency Evolution of Aglianico Wine. Molecules, 2020, 25, 4607.	3.8	8
8	Effectiveness of chitosanÂas an alternative to sulfites in red wine production. European Food Research and Technology, 2020, 246, 1795-1804.	3.3	13
9	New insights into the formation of precipitates of quercetin in Sangiovese wines. Journal of Food Science and Technology, 2020, 57, 2602-2611.	2.8	15
10	How must pH affects the level of red wine phenols. LWT - Food Science and Technology, 2020, 129, 109546.	5.2	25
11	Astringency subqualities and sensory perception of Tuscan Sangiovese wines. Oeno One, 2020, 54, 75-85.	1.4	14
12	Impact of 5-year bottle aging under controlled oxygen exposure on sulfur dioxide and phenolic composition of tannin-rich red wines. Oeno One, 2020, 54, 623-636.	1.4	13
13	Aging of Aglianico and Sangiovese wine on mannoproteins: Effect on astringency and colour. LWT - Food Science and Technology, 2019, 105, 233-241.	5.2	30
14	Does the denomination taste better than the wine?. British Food Journal, 2019, 121, 3293-3306.	2.9	6
15	Effect of enological tannin addition on astringency subqualities and phenolic content of red wines. Journal of Sensory Studies, 2018, 33, e12325.	1.6	35
16	Enological tannins affect acetaldehyde evolution, colour stability and tannin reactivity during forced oxidation of red wine. International Journal of Food Science and Technology, 2018, 53, 228-236.	2.7	27
17	Evolution of Sangiovese Wines With Varied Tannin and Anthocyanin Ratios During Oxidative Aging. Frontiers in Chemistry, 2018, 6, 63.	3.6	35
18	Metabolic and RNA profiling elucidates proanthocyanidins accumulation in Aglianico grape. Food Chemistry, 2017, 233, 52-59.	8.2	19

#	Article	IF	CITATIONS
19	Oxygen exposure of tannins-rich red wines during bottle aging. Influence on phenolics and color, astringency markers and sensory attributes. European Food Research and Technology, 2017, 243, 669-680.	3.3	38
20	Polyphenol content and differential expression of flavonoid biosynthetic pathway genes in berries of Aglianico. Acta Horticulturae, 2017, , 141-148.	0.2	8
21	Effect of yeast strain and some nutritional factors on tannin composition and potential astringency of model wines. Food Microbiology, 2016, 53, 128-134.	4.2	21
22	Performance of a protein extracted from potatoes for fining of white musts. Food Chemistry, 2016, 190, 237-243.	8.2	29
23	Transfer of tannin characteristics from grape skins or seeds to wine-like solutions and their impact on potential astringency. LWT - Food Science and Technology, 2015, 63, 667-676.	5.2	25
24	Chip electrophoresis as a novel approach to measure the polyphenols reactivity toward human saliva. Electrophoresis, 2014, 35, 1735-1741.	2.4	15
25	Biochemical features of native red wines and genetic diversity of the corresponding grape varieties from Campania region. Food Chemistry, 2014, 143, 506-513.	8.2	38
26	A preliminary characterization of Aglianico (Vitis vinifera L. cv.) grape proanthocyanidins and evaluation of their reactivity towards salivary proteins. Food Chemistry, 2014, 164, 142-149.	8.2	44
27	Evolution of Phenolic Compounds and Astringency during Aging of Red Wine: Effect of Oxygen Exposure before and after Bottling. Journal of Agricultural and Food Chemistry, 2013, 61, 1618-1627.	5.2	79
28	Use of patatin, a protein extracted from potato, as alternative to animal proteins in fining of red wine. European Food Research and Technology, 2012, 235, 753-765.	3.3	52
29	Application of the SPI (Saliva Precipitation Index) to the evaluation of red wine astringency. Food Chemistry, 2012, 135, 2498-2504.	8.2	66
30	Precipitation of Salivary Proteins After the Interaction with Wine: The Effect of Ethanol, pH, Fructose, and Mannoproteins. Journal of Food Science, 2012, 77, C485-90.	3.1	43
31	Partial dealcoholisation of red wines by membrane contactor technique: influence on colour, phenolic compounds and saliva precipitation index. European Food Research and Technology, 2011, 233, 647-655.	3.3	40
32	Evaluation of the astringency of commercial tannins by means of the SDS–PAGE-based method. Food Chemistry, 2010, 122, 951-956.	8.2	39
33	THE ROLE OF SACCHAROMYCES CEREVISIAE WINE YEAST IN THE HYDROLYSIS OF GLYCOCONJUGATED AROMA PRECURSORS DURING WINEMAKING. Acta Horticulturae, 2007, , 155-160.	0.2	1
34	Evaluation of aglianico grape skin and seed polyphenol astringency by SDS–PAGE electrophoresis of salivary proteins after the binding reaction. Food Chemistry, 2006, 97, 614-620.	8.2	83
35	A beta-glucosidase gene isolated from wine Lactobacillus plantarum is regulated by abiotic stresses. Journal of Applied Microbiology, 2005, 98, 855-861.	3.1	76
36	Influence of Assimilable Nitrogen on Volatile Acidity Production by Saccharomyces cerevisiae during High Sugar Fermentation. Journal of Bioscience and Bioengineering, 2004, 96, 507-512.	2.2	1

4

#	Article	IF	CITATIONS
37	Influence of assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. Journal of Bioscience and Bioengineering, 2003, 96, 507-512.	2.2	108

Salivary Protein-Tannin Interaction: The Binding behind Astringency. , 0, , .