List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7545097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12996-13001.	7.1	178
2	pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8098-8103.	7.1	164
3	Nanoparticleâ€Conjugate TLR7/8 Agonist Localized Immunotherapy Provokes Safe Antitumoral Responses. Advanced Materials, 2018, 30, e1803397.	21.0	120
4	Transiently thermoresponsive polymers and their applications in biomedicine. Chemical Society Reviews, 2017, 46, 1193-1239.	38.1	117
5	Cationic Nanohydrogel Particles as Potential siRNA Carriers for Cellular Delivery. ACS Nano, 2012, 6, 2198-2214.	14.6	111
6	Waterâ€Soluble Polymers Coupled with Glycopeptide Antigens and Tâ€Cell Epitopes as Potential Antitumor Vaccines. Angewandte Chemie - International Edition, 2013, 52, 10652-10656.	13.8	83
7	pH-Degradable Mannosylated Nanogels for Dendritic Cell Targeting. Biomacromolecules, 2016, 17, 2479-2488.	5.4	66
8	The Protein Corona as a Confounding Variable of Nanoparticle-Mediated Targeted Vaccine Delivery. Frontiers in Immunology, 2018, 9, 1760.	4.8	63
9	Aggregation Behavior of Cationic Nanohydrogel Particles in Human Blood Serum. Biomacromolecules, 2014, 15, 1526-1533.	5.4	60
10	Size-Dependent Knockdown Potential of siRNA-Loaded Cationic Nanohydrogel Particles. Biomacromolecules, 2014, 15, 4111-4121.	5.4	59
11	New Perspectives of HPMAâ€based Copolymers Derived by Postâ€Polymerization Modification. Macromolecular Bioscience, 2014, 14, 607-618.	4.1	55
12	Wellâ€Defined Polymer–Paclitaxel Prodrugs by a Graftingâ€fromâ€Drug Approach. Angewandte Chemie - International Edition, 2016, 55, 11791-11796.	13.8	55
13	SiRNA-mediated in vivo gene knockdown by acid-degradable cationic nanohydrogel particles. Journal of Controlled Release, 2017, 248, 10-23.	9.9	51
14	Targeting Protumoral Tumor-Associated Macrophages with Nanobody-Functionalized Nanogels through Strain Promoted Azide Alkyne Cycloaddition Ligation. Bioconjugate Chemistry, 2018, 29, 2394-2405.	3.6	51
15	Lymph-Node-Targeted Immune Activation by Engineered Block Copolymer Amphiphiles–TLR7/8 Agonist Conjugates. Journal of the American Chemical Society, 2018, 140, 14300-14307.	13.7	50
16	Supramolecular Linear- <i>g</i> -Hyperbranched Graft Polymers: Topology and Binding Strength of Hyperbranched Side Chains. Macromolecules, 2013, 46, 9544-9553.	4.8	49
17	Potent anti-viral vaccine adjuvant based on pH-degradable nanogels with covalently linked small molecule imidazoquinoline TLR7/8 agonist. Biomaterials, 2018, 178, 643-651.	11.4	49
18	CpG‣oaded Multifunctional Cationic Nanohydrogel Particles as Selfâ€Adjuvanting Glycopeptide Antitumor Vaccines. Advanced Healthcare Materials, 2015, 4, 522-527.	7.6	46

#	Article	IF	CITATIONS
19	DNA–Polymer Nanostructures by RAFT Polymerization and Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie - International Edition, 2020, 59, 15474-15479.	13.8	46
20	Sterilizing Immunity against SARSâ€CoVâ€2 Infection in Mice by a Singleâ€Shot and Lipid Amphiphile Imidazoquinoline TLR7/8 Agonistâ€Adjuvanted Recombinant Spike Protein Vaccine**. Angewandte Chemie - International Edition, 2021, 60, 9467-9473.	13.8	45
21	FRET Monitoring of Intracellular Ketal Hydrolysis in Synthetic Nanoparticles. Angewandte Chemie - International Edition, 2018, 57, 10760-10764.	13.8	43
22	Potent Lymphatic Translocation and Spatial Control Over Innate Immune Activation by Polymer–Lipid Amphiphile Conjugates of Smallâ€Molecule TLR7/8 Agonists. Angewandte Chemie - International Edition, 2019, 58, 15390-15395.	13.8	43
23	A Fully Synthetic Glycopeptide Antitumor Vaccine Based on Multiple Antigen Presentation on a Hyperbranched Polymer. Chemistry - A European Journal, 2014, 20, 4232-4236.	3.3	41
24	Linear-Hyperbranched Graft-Copolymers via <i>Grafting-to</i> Strategy Based on Hyperbranched Dendron Analogues and Reactive Ester Polymers. Macromolecules, 2012, 45, 5901-5910.	4.8	39
25	In Vivo Geneâ€Silencing in Fibrotic Liver by siRNA‣oaded Cationic Nanohydrogel Particles. Advanced Healthcare Materials, 2015, 4, 2809-2815.	7.6	39
26	A Synthetic, Transiently Thermoresponsive Homopolymer with UCST Behaviour within a Physiologically Relevant Window. Angewandte Chemie - International Edition, 2019, 58, 7866-7872.	13.8	38
27	Targeted Repolarization of Tumorâ€Associated Macrophages via Imidazoquinoline‣inked Nanobodies. Advanced Science, 2021, 8, 2004574.	11.2	38
28	Degradable Cationic Nanohydrogel Particles for Stimuliâ€Responsive Release of siRNA. Macromolecular Rapid Communications, 2014, 35, 2057-2064.	3.9	36
29	Reductive Decationizable Block Copolymers for Stimuli-Responsive mRNA Delivery. Macromolecular Rapid Communications, 2016, 37, 924-933.	3.9	36
30	In Vivo siRNA Delivery to Immunosuppressive Liver Macrophages by α-Mannosyl-Functionalized Cationic Nanohydrogel Particles. Cells, 2020, 9, 1905.	4.1	36
31	Squaric Ester-Based, pH-Degradable Nanogels: Modular Nanocarriers for Safe, Systemic Administration of Toll-like Receptor 7/8 Agonistic Immune Modulators. Journal of the American Chemical Society, 2021, 143, 9872-9883.	13.7	36
32	Systemically Administered TLR7/8 Agonist and Antigen-Conjugated Nanogels Govern Immune Responses against Tumors. ACS Nano, 2022, 16, 4426-4443.	14.6	33
33	Density of Conjugated Antibody Determines the Extent of Fc Receptor Dependent Capture of Nanoparticles by Liver Sinusoidal Endothelial Cells. ACS Nano, 2021, 15, 15191-15209.	14.6	32
34	Immunoengineering through cancer vaccines – A personalized and multi-step vaccine approach towards precise cancer immunity. Journal of Controlled Release, 2018, 289, 125-145.	9.9	31
35	Cancer Cell Lysate Entrapment in CaCO3 Engineered with Polymeric TLR-Agonists: Immune-Modulating Microparticles in View of Personalized Antitumor Vaccination. Chemistry of Materials, 2017, 29, 4209-4217.	6.7	30
36	Combining Ring-Opening Multibranching and RAFT Polymerization: Multifunctional Linear–Hyperbranched Block Copolymers via Hyperbranched Macro-Chain-Transfer Agents. Macromolecules, 2013, 46, 2892-2904.	4.8	29

#	Article	IF	CITATIONS
37	Micellar Paclitaxel-Initiated RAFT Polymer Conjugates with Acid-Sensitive Behavior. ACS Macro Letters, 2017, 6, 272-276.	4.8	29
38	Thermoplastic polyurethane-based intravaginal rings for prophylaxis and treatment of (recurrent) bacterial vaginosis. International Journal of Pharmaceutics, 2017, 529, 218-226.	5.2	29
39	Cationic Nanohydrogel Particles for Therapeutic Oligonucleotide Delivery. Macromolecular Bioscience, 2017, 17, 1700092.	4.1	28
40	pH-Sensitive Hydrazone-Linked Doxorubicin Nanogels via Polymeric-Activated Ester Scaffolds: Synthesis, Assembly, and In Vitro and In Vivo Evaluation in Tumor-Bearing Zebrafish. Chemistry of Materials, 2018, 30, 8587-8596.	6.7	28
41	Novel Opportunities for Cathepsin S Inhibitors in Cancer Immunotherapy by Nanocarrier-Mediated Delivery. Cells, 2020, 9, 2021.	4.1	26
42	RAFT-polymerized poly(hexafluoroisopropyl methacrylate)s as precursors for functional water-soluble polymers. Polymer Chemistry, 2014, 5, 2484.	3.9	24
43	Synthetic Rhamnose Glycopolymer Cell-Surface Receptor for Endogenous Antibody Recruitment. Biomacromolecules, 2020, 21, 793-802.	5.4	24
44	Not just for tumor targeting: unmet medical needs and opportunities for nanomedicine. Nanomedicine, 2015, 10, 3147-3166.	3.3	23
45	Amphiphilic poly(esteracetal)s as dual pH- and enzyme-responsive micellar immunodrug delivery systems. Polymer Chemistry, 2020, 11, 2441-2456.	3.9	22
46	Control over Imidazoquinoline Immune Stimulation by pH-Degradable Poly(norbornene) Nanogels. Biomacromolecules, 2020, 21, 2246-2257.	5.4	21
47	Transiently Responsive Block Copolymer Micelles Based on <i>N</i> -(2-Hydroxypropyl)methacrylamide Engineered with Hydrolyzable Ethylcarbonate Side Chains. Biomacromolecules, 2016, 17, 119-127.	5.4	20
48	Downstream processing from hot-melt extrusion towards tablets: A quality by design approach. International Journal of Pharmaceutics, 2017, 531, 235-245.	5.2	20
49	Transiently Thermoresponsive Acetal Polymers for Safe and Effective Administration of Amphotericin B as a Vaccine Adjuvant. Bioconjugate Chemistry, 2018, 29, 748-760.	3.6	20
50	Core/shell protein-reactive nanogels via a combination of RAFT polymerization and vinyl sulfone postmodification. Nanomedicine, 2016, 11, 2631-2645.	3.3	19
51	New Techniques to Assess In Vitro Release of siRNA from Nanoscale Polyplexes. Pharmaceutical Research, 2015, 32, 1957-1974.	3.5	18
52	Influenza-binding sialylated polymer coated gold nanoparticles prepared via RAFT polymerization and reductive amination. Chemical Communications, 2016, 52, 3352-3355.	4.1	18
53	Squaric ester amides as hydrolysis-resistant functional groups for protein-conjugation of RAFT-derived polymers. Polymer Chemistry, 2016, 7, 7242-7248.	3.9	17
54	αâ€Mannosylâ€Functionalized Cationic Nanohydrogel Particles for Targeted Gene Knockdown in Immunosuppressive Macrophages. Macromolecular Bioscience, 2019, 19, e1900162.	4.1	16

#	Article	IF	CITATIONS
55	Reactive-ester derived polymer nanogels for cancer immunotherapy. European Polymer Journal, 2020, 124, 109481.	5.4	16
56	Shining Light on Polymeric Drug Nanocarriers with Fluorescence Correlation Spectroscopy. Macromolecular Rapid Communications, 2022, 43, e2100892.	3.9	16
57	pH-degradable, bisphosphonate-loaded nanogels attenuate liver fibrosis by repolarization of M2-type macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122310119.	7.1	16
58	Fluorescence Correlation Spectroscopy Monitors the Fate of Degradable Nanocarriers in the Blood Stream. Biomacromolecules, 2022, 23, 1065-1074.	5.4	15
59	Imidazoquinoline-Conjugated Degradable Coacervate Conjugate for Local Cancer Immunotherapy. ACS Biomaterials Science and Engineering, 2020, 6, 4993-5000.	5.2	13
60	A Generic Polymer–Protein Ligation Strategy for Vaccine Delivery. Biomacromolecules, 2016, 17, 874-881.	5.4	11
61	Transient Multivalent Nanobody Targeting to CD206-Expressing Cells via PH-Degradable Nanogels. Cells, 2020, 9, 2222.	4.1	11
62	Transient Lymph Node Immune Activation by Hydrolysable Polycarbonate Nanogels. Advanced Functional Materials, 2022, 32, .	14.9	11
63	Selfâ€Immolative RAFTâ€Polymer End Group Modification. Macromolecular Rapid Communications, 2021, 42, e2000752.	3.9	10
64	Tunable dynamic hydrophobic attachment of guest molecules in amphiphilic core–shell polymers. Polymer Chemistry, 2016, 7, 5783-5798.	3.9	9
65	End Group Dye‣abeled Polycarbonate Block Copolymers for Micellar (Immunoâ€)Drug Delivery. Macromolecular Rapid Communications, 2022, 43, e2200095.	3.9	9
66	Design of pHâ€Degradable Polymerâ€Lipid Amphiphiles Using a Ketalâ€Functionalized RAFT Chain Transfer Agent. Macromolecular Rapid Communications, 2020, 41, 2000034.	3.9	6
67	Lipid Nature and Alkyl Length Influence Lymph Node Accumulation of Lipidâ€Polyethylene Glycol Amphiphiles. Advanced Therapeutics, 2021, 4, 2100079.	3.2	6
68	Amphiphile Polymerâ€Lipidkonjugate zur potenten lymphatischen Anreicherung von TLR7/8â€Agonisten ermöglichen eine örtlich begrenzte Aktivierung des angeborenen Immunsystems. Angewandte Chemie, 2019, 131, 15535-15541.	2.0	5
69	Engineering mannosylated nanogels with membrane-disrupting properties. Polymer Chemistry, 2019, 10, 4297-4304.	3.9	5
70	Acrylamides with hydrolytically labile carbonate ester side chains as versatile building blocks for well-defined block copolymer micelles via RAFT polymerization. Polymer Chemistry, 2017, 8, 6544-6557.	3.9	4
71	Sterilizing Immunity against SARSâ€CoVâ€2 Infection in Mice by a Singleâ€Shot and Lipid Amphiphile Imidazoquinoline TLR7/8 Agonistâ€Adjuvanted Recombinant Spike Protein Vaccine**. Angewandte Chemie, 2021, 133, 9553-9559.	2.0	4
72	Synthetisch hergestellte, transient thermoresponsive Homopolymere mit einer oberen kritischen LA¶sungstemperatur für physiologisch relevante Anwendungen. Angewandte Chemie, 2019, 131, 7948-7954.	2.0	3

#	Article	IF	CITATIONS
73	DNAâ€Polymerâ€Nanostrukturen durch RAFTâ€Polymerisation und polymerisationsinduzierte Selbstassemblierung. Angewandte Chemie, 2020, 132, 15602-15607.	2.0	3
74	Assembly of pHâ€Responsive Antibodyâ€Ðrugâ€Inspired Conjugates. Macromolecular Bioscience, 2022, 22, 2100299.	4.1	3
75	Försterâ€Resonanzenergietransferâ€basierter Nachweis intrazelluläer Ketalâ€Hydrolyse in synthetisch vernetzten Nanopartikeln. Angewandte Chemie, 2018, 130, 10920-10925.	2.0	2
76	Addressing Dendritic Cells for Anticancer Immunity. ADC Review / Journal of Antibody-drug Conjugates, 0, , .	0.0	2
77	Squaric Esterâ€Based Nanogels Induce No Distinct Protein Corona but Entrap Plasma Proteins into their Porous Hydrogel Network. Macromolecular Rapid Communications, 2022, 43, .	3.9	2
78	From Selfâ€Organization to Tumorâ€Immune Therapy: How Things Started and How They Evolved. Macromolecular Rapid Communications, 2022, 43, .	3.9	1
79	Back Cover: Macromol. Biosci. 5/2014. Macromolecular Bioscience, 2014, 14, 750-750.	4.1	0
80	Macromol. Rapid Commun. 24/2014. Macromolecular Rapid Communications, 2014, 35, 2104-2104.	3.9	0
81	P0419 : In vivo cell specific gene silencing in the liver using novel siRNA-loaded nanohydrogel particles. Journal of Hepatology, 2015, 62, S470-S471.	3.7	0
82	Wohldefinierte polymere Paclitaxel-Prodrugs über eine Grafting-From-Methode ausgehend vom Arzneistoff. Angewandte Chemie, 2016, 128, 11967-11973.	2.0	0
83	In Vivo Myofibroblast Specific Gene Silencing in the Liver Using Novel Sirna-Loaded Biodegradable Nanohydrogel Particles. Journal of Hepatology, 2016, 64, S448.	3.7	0
84	THU-469-Nanoparticular bisphosphonate to selectively target and repolarize liver macrophages for efficient anti-tumour response. Journal of Hepatology, 2019, 70, e366-e367.	3.7	0
85	Nanoparticular bisphosphonate induces an anti-fibrotic response by modulation of fibrosis associated genes and pathways in (non-) parenchymal liver cells in CCL4 fibrotic mice. Journal of Hepatology, 2020, 73, S519.	3.7	0
86	A Tribute to Rudolf Zentel and His Lifetime Research Achievements. Macromolecular Rapid Communications, 2022, 43, .	3.9	0