Henny C Van Der Mei

List of Publications by Citations

Source: https://exaly.com/author-pdf/7544989/henny-c-van-der-mei-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

388 papers

18,063 citations

70 h-index 113 g-index

395 ext. papers

20,246 ext. citations

6.9 avg, IF

6.78 L-index

#	Paper	IF	Citations
388	Physico-chemistry of initial microbial adhesive interactionsits mechanisms and methods for study. <i>FEMS Microbiology Reviews</i> , 1999 , 23, 179-230	15.1	722
387	Biomaterial-associated infection: locating the finish line in the race for the surface. <i>Science Translational Medicine</i> , 2012 , 4, 153rv10	17.5	455
386	In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. <i>Biomaterials</i> , 2002 , 23, 1417-23	15.6	395
385	Microbiota restoration: natural and supplemented recovery of human microbial communities. <i>Nature Reviews Microbiology</i> , 2011 , 9, 27-38	22.2	365
384	How a fungus escapes the water to grow into the air. <i>Current Biology</i> , 1999 , 9, 85-8	6.3	278
383	Infection of orthopedic implants and the use of antibiotic-loaded bone cements. A review. <i>Acta Orthopaedica</i> , 2001 , 72, 557-71		272
382	Transmission of infection by flexible gastrointestinal endoscopy and bronchoscopy. <i>Clinical Microbiology Reviews</i> , 2013 , 26, 231-54	34	268
381	Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. <i>Chemical Society Reviews</i> , 2019 , 48, 428-446	58.5	262
380	A Shape-Adaptive, Antibacterial-Coating of Immobilized Quaternary-Ammonium Compounds Tethered on Hyperbranched Polyurea and its Mechanism of Action. <i>Advanced Functional Materials</i> , 2014 , 24, 346-355	15.6	219
379	Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. <i>Microbiology (United Kingdom)</i> , 2008 , 154, 3122-3133	2.9	218
378	Microbial adhesion in flow displacement systems. Clinical Microbiology Reviews, 2006, 19, 127-41	34	216
377	Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms. <i>ACS Nano</i> , 2016 , 10, 4779-89	16.7	211
376	Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature. <i>Langmuir</i> , 2004 , 20, 10949-55	4	206
375	Microbial biofilm growth vs. tissue integration: "the race for the surface" experimentally studied. <i>Acta Biomaterialia</i> , 2009 , 5, 1399-404	10.8	200
374	Role of extracellular DNA in initial bacterial adhesion and surface aggregation. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 3405-8	4.8	198
373	Bacterial adhesion and growth on a polymer brush-coating. <i>Biomaterials</i> , 2008 , 29, 4117-21	15.6	178
372	Analysis of bacterial detachment from substratum surfaces by the passage of air-liquid interfaces. <i>Applied and Environmental Microbiology</i> , 2001 , 67, 2531-7	4.8	173

(2009-2015)

371	Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. <i>FEMS Microbiology Reviews</i> , 2015 , 39, 234-45	15.1	165
370	Detection of biomaterial-associated infections in orthopaedic joint implants. <i>Clinical Orthopaedics and Related Research</i> , 2003 , 261-8	2.2	165
369	Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. <i>Colloids and Surfaces B: Biointerfaces</i> , 2006 , 49, 79-86	6	155
368	Residual gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of implantation. <i>Biomaterials</i> , 2003 , 24, 1829-31	15.6	151
367	Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131. <i>FEMS Microbiology Letters</i> , 2000 , 190, 177-80	2.9	145
366	The phenomenon of infection with abdominal wall reconstruction. <i>Biomaterials</i> , 2007 , 28, 2314-27	15.6	142
365	Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation. <i>Eukaryotic Cell</i> , 2009 , 8, 1658-64		137
364	Initial adhesion and surface growth of Staphylococcus epidermidis and Pseudomonas aeruginosa on biomedical polymers. <i>Journal of Biomedical Materials Research Part B</i> , 2000 , 50, 208-14		137
363	How do bacteria know they are on a surface and regulate their response to an adhering state?. <i>PLoS Pathogens</i> , 2012 , 8, e1002440	7.6	132
362	Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethacrylate bone cements. <i>Biomaterials</i> , 2001 , 22, 1607-11	15.6	131
361	Influence of surface roughness on streptococcal adhesion forces to composite resins. <i>Dental Materials</i> , 2011 , 27, 770-8	5.7	130
360	Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. <i>Advances in Colloid and Interface Science</i> , 2018 , 261, 1-14	14.3	129
359	Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci. <i>Acta Biomaterialia</i> , 2012 , 8, 2047-55	10.8	128
358	A Functional DNase I Coating to Prevent Adhesion of Bacteria and the Formation of Biofilm. <i>Advanced Functional Materials</i> , 2013 , 23, 2843-2849	15.6	125
357	Nanoengineered Superhydrophobic Surfaces of Aluminum with Extremely Low Bacterial Adhesivity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 12118-12129	9.5	124
356	Inhibition of adhesion of yeasts and bacteria by poly(ethylene oxide)-brushes on glass in a parallel plate flow chamber. <i>Microbiology (United Kingdom)</i> , 2003 , 149, 3239-3246	2.9	123
355	Soft tissue integration versus early biofilm formation on different dental implant materials. <i>Dental Materials</i> , 2014 , 30, 716-27	5.7	122
354	Effect of cinnamon oil on icaA expression and biofilm formation by Staphylococcus epidermidis. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 6850-5	4.8	109

353	Gentamicin release from polymethylmethacrylate bone cements and Staphylococcus aureus biofilm formation. <i>Acta Orthopaedica</i> , 2000 , 71, 625-9		109
352	Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. <i>Expert Opinion on Drug Delivery</i> , 2013 , 10, 341-51	8	106
351	Pluronic-lysozyme conjugates as anti-adhesive and antibacterial bifunctional polymers for surface coating. <i>Biomaterials</i> , 2011 , 32, 6333-41	15.6	106
350	Specific molecular recognition and nonspecific contributions to bacterial interaction forces. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 2559-64	4.8	105
349	Influence of biosurfactants from probiotic bacteria on formation of biofilms on voice prostheses. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 4408-10	4.8	105
348	Synthesis and characterization of surface-grafted polyacrylamide brushes and their inhibition of microbial adhesion. <i>Langmuir</i> , 2007 , 23, 5120-6	4	103
347	Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A. <i>Colloids and Surfaces B: Biointerfaces</i> , 2006 , 53, 105-12	6	102
346	Comparison of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 5441-6	4.8	101
345	Influence of extracellular polymeric substances on deposition and redeposition of Pseudomonas aeruginosa to surfaces. <i>Microbiology (United Kingdom)</i> , 2002 , 148, 1161-1169	2.9	99
344	Impact of 3D Hierarchical Nanostructures on the Antibacterial Efficacy of a Bacteria-Triggered Self-Defensive Antibiotic Coating. <i>ACS Applied Materials & Defension of the Antibiotic Coating and Communication (Coating Coating Coat</i>	9.5	98
343	Antiadhesive polymer brush coating functionalized with antimicrobial and RGD peptides to reduce biofilm formation and enhance tissue integration. <i>Biomacromolecules</i> , 2014 , 15, 2019-26	6.9	91
342	Electric current-induced detachment of Staphylococcus epidermidis biofilms from surgical stainless steel. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 6871-4	4.8	88
341	Eradication of Multidrug-Resistant Staphylococcal Infections by Light-Activatable Micellar Nanocarriers in a Murine Model. <i>Advanced Functional Materials</i> , 2017 , 27, 1701974	15.6	87
340	Effects of quaternary ammonium silane coatings on mixed fungal and bacterial biofilms on tracheoesophageal shunt prostheses. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 3673-7	4.8	87
339	The effect of mixing on gentamicin release from polymethylmethacrylate bone cements. <i>Acta Orthopaedica</i> , 2003 , 74, 670-6		87
338	Adsorption of pluronic F-127 on surfaces with different hydrophobicities probed by quartz crystal microbalance with dissipation. <i>Langmuir</i> , 2009 , 25, 6245-9	4	85
337	3D-Printable Antimicrobial Composite Resins. Advanced Functional Materials, 2015, 25, 6756-6767	15.6	83
336	The inhibition of the adhesion of clinically isolated bacterial strains on multi-component cross-linked poly(ethylene glycol)-based polymer coatings. <i>Biomaterials</i> , 2007 , 28, 4105-12	15.6	83

335	Bacterial cell surface damage due to centrifugal compaction. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 120-5	4.8	82	
334	Electric field induced desorption of bacteria from a conditioning film covered substratum. <i>Biotechnology and Bioengineering</i> , 2001 , 76, 395-9	4.9	82	
333	Physicochemical and biochemical characterization of biosurfactants released by Lactobacillus strains. <i>Colloids and Surfaces B: Biointerfaces</i> , 1996 , 8, 51-61	6	82	
332	Bacterial factors influencing adhesion of Pseudomonas aeruginosa strains to a poly(ethylene oxide) brush. <i>Microbiology (United Kingdom)</i> , 2006 , 152, 2673-2682	2.9	81	
331	Direct probing by atomic force microscopy of the cell surface softness of a fibrillated and nonfibrillated oral streptococcal strain. <i>Biophysical Journal</i> , 2000 , 78, 2668-74	2.9	80	
330	Interfacial re-arrangement in initial microbial adhesion to surfaces. <i>Current Opinion in Colloid and Interface Science</i> , 2010 , 15, 510-517	7.6	79	
329	Influence of culture heterogeneity in cell surface charge on adhesion and biofilm formation by Enterococcus faecalis. <i>Journal of Bacteriology</i> , 2006 , 188, 2421-6	3.5	79	
328	Influence of fluid shear and microbubbles on bacterial detachment from a surface. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 3668-73	4.8	77	
327	Orthodontic treatment with fixed appliances and biofilm formationa potential public health threat?. <i>Clinical Oral Investigations</i> , 2014 , 18, 1711-8	4.2	74	
326	Probing molecular interactions and mechanical properties of microbial cell surfaces by atomic force microscopy. <i>Ultramicroscopy</i> , 2001 , 86, 113-20	3.1	74	
325	Effects of cell surface damage on surface properties and adhesion of Pseudomonas aeruginosa. Journal of Microbiological Methods, 2001 , 45, 95-101	2.8	74	
324	In vivo evaluation of bacterial infection involving morphologically different surgical meshes. <i>Annals of Surgery</i> , 2010 , 251, 133-7	7.8	73	
323	Adhesion forces and coaggregation between vaginal staphylococci and lactobacilli. <i>PLoS ONE</i> , 2012 , 7, e36917	3.7	73	
322	Critical factors in the translation of improved antimicrobial strategies for medical implants and devices. <i>Biomaterials</i> , 2013 , 34, 9237-43	15.6	71	
321	Role of eDNA on the adhesion forces between Streptococcus mutans and substratum surfaces: influence of ionic strength and substratum hydrophobicity. <i>Langmuir</i> , 2011 , 27, 10113-8	4	71	
320	Interfacial self-assembly of a Schizophyllum commune hydrophobin into an insoluble amphipathic protein membrane depends on surface hydrophobicity. <i>Colloids and Surfaces B: Biointerfaces</i> , 1995 , 5, 189-195	6	71	
319	Ksoft-particleRanalysis of the electrophoretic mobility of a fibrillated and non-fibrillated oral streptococcal strain: Streptococcus salivarius. <i>Biophysical Chemistry</i> , 1998 , 74, 251-5	3.5	70	
318	Hydrophobic recovery of repeatedly plasma-treated silicone rubber. Part 1. Storage in air. <i>Journal of Adhesion Science and Technology</i> , 1995 , 9, 1263-1278	2	70	

317	Bond-strengthening in staphylococcal adhesion to hydrophilic and hydrophobic surfaces using atomic force microscopy. <i>Langmuir</i> , 2008 , 24, 12990-4	4	69
316	In vitro methods for the evaluation of antimicrobial surface designs. <i>Acta Biomaterialia</i> , 2018 , 70, 12-24	10.8	68
315	A distinguishable role of eDNA in the viscoelastic relaxation of biofilms. <i>MBio</i> , 2013 , 4, e00497-13	7.8	68
314	Analysis of the interfacial properties of fibrillated and nonfibrillated oral streptococcal strains from electrophoretic mobility and titration measurements: evidence for the shortcomings of the Relassical soft-particle approach R. Langmuir, 2005, 21, 11268-82	4	67
313	Multiple linear regression analysis of bacterial deposition to polyurethane coatings after conditioning film formation in the marine environment. <i>Microbiology (United Kingdom)</i> , 2004 , 150, 1779-	- 17 84	67
312	Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength. <i>Colloids and Surfaces B: Biointerfaces</i> , 2005 , 41, 33-41	6	66
311	Self-defensive antibiotic-loaded layer-by-layer coatings: Imaging of localized bacterial acidification and pH-triggering of antibiotic release. <i>Acta Biomaterialia</i> , 2017 , 61, 66-74	10.8	65
310	The effect of water, ascorbic acid, and cranberry derived supplementation on human urine and uropathogen adhesion to silicone rubber. <i>Canadian Journal of Microbiology</i> , 1999 , 45, 691-4	3.2	65
309	Statistical analysis of long- and short-range forces involved in bacterial adhesion to substratum surfaces as measured using atomic force microscopy. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 5065-70	4.8	64
308	Inhibition of initial adhesion of uropathogenic Enterococcus faecalis to solid substrata by an adsorbed biosurfactant layer from Lactobacillus acidophilus. <i>Urology</i> , 1997 , 49, 790-4	1.6	64
307	Comparison of the microbial composition of voice prosthesis biofilms from patients requiring frequent versus infrequent replacement. <i>Annals of Otology, Rhinology and Laryngology</i> , 2002 , 111, 200-3	3 ^{2.1}	63
306	Methylobacterium and its role in health care-associated infection. <i>Journal of Clinical Microbiology</i> , 2014 , 52, 1317-21	9.7	62
305	Probing colloid-substratum contact stiffness by acoustic sensing in a liquid phase. <i>Analytical Chemistry</i> , 2012 , 84, 4504-12	7.8	62
304	Prevention of pin tract infection in external stainless steel fixator frames using electric current in a goat model. <i>Biomaterials</i> , 2007 , 28, 2122-6	15.6	62
303	Copal bone cement is more effective in preventing biofilm formation than Palacos R-G. <i>Clinical Orthopaedics and Related Research</i> , 2008 , 466, 1492-8	2.2	62
302	Polyacrylamide brush coatings preventing microbial adhesion to silicone rubber. <i>Colloids and Surfaces B: Biointerfaces</i> , 2008 , 64, 297-301	6	62
301	Plasticizers increase adhesion of the deteriogenic fungus Aureobasidium pullulans to polyvinyl chloride. <i>Applied and Environmental Microbiology</i> , 1999 , 65, 3575-81	4.8	61
300	Bacterial strains isolated from different niches can exhibit different patterns of adhesion to substrata. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 3758-60	4.8	60

(1994-2013)

299	Infection resistance of degradable versus non-degradable biomaterials: an assessment of the potential mechanisms. <i>Biomaterials</i> , 2013 , 34, 8013-7	15.6	59	
298	Positively charged biomaterials exert antimicrobial effects on gram-negative bacilli in rats. <i>Biomaterials</i> , 2003 , 24, 2707-10	15.6	59	
297	Length-Scale Mediated Differential Adhesion of Mammalian Cells and Microbes. <i>Advanced Functional Materials</i> , 2011 , 21, 3916-3923	15.6	58	
296	Determination of the shear force at the balance between bacterial attachment and detachment in weak-adherence systems, using a flow displacement chamber. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 916-9	4.8	58	
295	DNA-mediated bacterial aggregation is dictated by acidBase interactions. <i>Soft Matter</i> , 2011 , 7, 2927	3.6	57	
294	A surface-eroding antibiotic delivery system based on poly-(trimethylene carbonate). <i>Biomaterials</i> , 2009 , 30, 4738-42	15.6	57	
293	Nanoscale cell wall deformation impacts long-range bacterial adhesion forces on surfaces. <i>Applied and Environmental Microbiology</i> , 2014 , 80, 637-43	4.8	56	
292	Growth of Fibroblasts and Endothelial Cells on Wettability Gradient Surfaces. <i>Journal of Colloid and Interface Science</i> , 1997 , 188, 209-217	9.3	56	
291	Lipid-Based Antimicrobial Delivery-Systems for the Treatment of Bacterial Infections. <i>Frontiers in Chemistry</i> , 2019 , 7, 872	5	55	
2 90	Influence of cell surface appendages on the bacterium-substratum interface measured real-time using QCM-D. <i>Langmuir</i> , 2009 , 25, 1627-32	4	55	
289	or not to treat?. Nature Medicine, 1999 , 5, 358-9	50.5	55	
288	Current state of craniofacial prosthetic rehabilitation. <i>International Journal of Prosthodontics</i> , 2013 , 26, 57-67	1.9	54	
287	Hydrophobic recovery of repeatedly plasma-treated silicone rubber. Part 2. A comparison of the hydrophobic recovery in air, water, or liquid nitrogen. <i>Journal of Adhesion Science and Technology</i> , 1996 , 10, 351-359	2	54	
-96				
286	Atomic force microscopic corroboration of bond aging for adhesion of Streptococcus thermophilus to solid substrata. <i>Journal of Colloid and Interface Science</i> , 2004 , 278, 251-4	9.3	54	
285		9.3	5454	
	to solid substrata. <i>Journal of Colloid and Interface Science</i> , 2004 , 278, 251-4 Bacterial deposition to fluoridated and non-fluoridated polyurethane coatings with different elastic modulus and surface tension in a parallel plate and a stagnation point flow chamber. <i>Colloids</i>			
285	to solid substrata. <i>Journal of Colloid and Interface Science</i> , 2004 , 278, 251-4 Bacterial deposition to fluoridated and non-fluoridated polyurethane coatings with different elastic modulus and surface tension in a parallel plate and a stagnation point flow chamber. <i>Colloids and Surfaces B: Biointerfaces</i> , 2003 , 32, 179-190 Models for studying initial adhesion and surface growth in biofilm formation on surfaces. <i>Methods</i>	6	54	

281	The effect of dissolved organic carbon on bacterial adhesion to conditioning films adsorbed on glass from natural seawater collected during different seasons. <i>Biofouling</i> , 2003 , 19, 391-7	3.3	52
280	Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. <i>Acta Biomaterialia</i> , 2018 , 79, 331-343	10.8	52
279	Antimicrobial effects of an NO-releasing poly(ethylene vinylacetate) coating on soft-tissue implants in vitro and in a murine model. <i>Acta Biomaterialia</i> , 2009 , 5, 1905-10	10.8	51
278	Biofilm formation on surface characterized micro-implants for skeletal anchorage in orthodontics. <i>Biomaterials</i> , 2007 , 28, 2032-40	15.6	51
277	Bond strengthening in oral bacterial adhesion to salivary conditioning films. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 5511-5	4.8	50
276	Electrophoretic mobility distributions of single-strain microbial populations. <i>Applied and Environmental Microbiology</i> , 2001 , 67, 491-4	4.8	50
275	Biofilms in chronic diabetic foot ulcersa study of 2 cases. <i>Monthly Notices of the Royal Astronomical Society: Letters</i> , 2011 , 82, 383-5	4.3	49
274	Influence of a chitosan on oral bacterial adhesion and growth in vitro. <i>European Journal of Oral Sciences</i> , 2008 , 116, 493-5	2.3	48
273	The electrophoretic softness of the surface of Staphylococcus epidermidis cells grown in a liquid medium and on a solid agar. <i>Microbiology (United Kingdom)</i> , 2001 , 147, 757-762	2.9	48
272	Bacterial deposition in a parallel plate and a stagnation point flow chamber: microbial adhesion mechanisms depend on the mass transport conditions. <i>Microbiology (United Kingdom)</i> , 2002 , 148, 597-6	0 3 .9	48
271	Novel analysis of bacterium-substratum bond maturation measured using a quartz crystal microbalance. <i>Langmuir</i> , 2010 , 26, 11113-7	4	47
270	The potential for bio-optical imaging of biomaterial-associated infection in vivo. <i>Biomaterials</i> , 2010 , 31, 1984-95	15.6	47
269	In vitro and in vivo comparisons of staphylococcal biofilm formation on a cross-linked poly(ethylene glycol)-based polymer coating. <i>Acta Biomaterialia</i> , 2010 , 6, 1119-24	10.8	47
268	Comparison of methods to evaluate bacterial contact-killing materials. <i>Acta Biomaterialia</i> , 2017 , 59, 139	9-148	46
267	Mobile and immobile adhesion of staphylococcal strains to hydrophilic and hydrophobic surfaces. Journal of Colloid and Interface Science, 2009 , 331, 60-4	9.3	46
266	Detachment of polystyrene particles from collector surfaces by surface tension forces induced by air-bubble passage through a parallel plate flow chamber. <i>Journal of Adhesion Science and Technology</i> , 1997 , 11, 957-969	2	46
265	Bacterial interactions with nanostructured surfaces. <i>Current Opinion in Colloid and Interface Science</i> , 2018 , 38, 170-189	7.6	46
264	The combination of ultrasound with antibiotics released from bone cement decreases the viability of planktonic and biofilm bacteria: an in vitro study with clinical strains. <i>Journal of Antimicrobial Chemotherapy</i> 2006 , 58, 1287-90	5.1	45

(2015-2015)

263	Influence of Adhesion Force on icaA and cidA Gene Expression and Production of Matrix Components in Staphylococcus aureus Biofilms. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 336	9- 1 8	44	
262	Real time noninvasive monitoring of contaminating bacteria in a soft tissue implant infection model. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2009 , 88, 123-9	3.5	44	
261	Adhesion of yeasts and bacteria to fluoro-alkylsiloxane layers chemisorbed on silicone rubber. <i>Colloids and Surfaces B: Biointerfaces</i> , 1998 , 10, 179-190	6	44	
260	Dynamic cell surface hydrophobicity of Lactobacillus strains with and without surface layer proteins. <i>Journal of Bacteriology</i> , 2004 , 186, 6647-50	3.5	44	
259	On Relations between Microscopic and Macroscopic Physicochemical Properties of Bacterial Cell Surfaces: An AFM Study on Streptococcus mitis Strains. <i>Langmuir</i> , 2003 , 19, 2372-2377	4	44	
258	Oral bacterial adhesion forces to biomaterial surfaces constituting the bracket-adhesive-enamel junction in orthodontic treatment. <i>European Journal of Oral Sciences</i> , 2009 , 117, 419-26	2.3	43	
257	Resistance to a polyquaternium-1 lens care solution and isoelectric points of Pseudomonas aeruginosa strains. <i>Journal of Antimicrobial Chemotherapy</i> , 2006 , 57, 764-6	5.1	43	
256	Influence of shear on microbial adhesion to PEO-brushes and glass by convective-diffusion and sedimentation in a parallel plate flow chamber. <i>Colloids and Surfaces B: Biointerfaces</i> , 2005 , 46, 1-6	6	43	
255	Inhibition of uropathogenic biofilm growth on silicone rubber in human urine by lactobacilli—a teleologic approach. <i>World Journal of Urology</i> , 2000 , 18, 422-6	4	43	
254	Molecular surface characterization of oral streptococci by Fourier transform infrared spectroscopy. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 1989 , 991, 395-8	4	43	
253	Small-molecule-hosting nanocomposite films with multiple bacteria-triggered responses. <i>NPG Asia Materials</i> , 2014 , 6, e121-e121	10.3	42	
252	Acoustic sensing of the bacterium-substratum interface using QCM-D and the influence of extracellular polymeric substances. <i>Journal of Colloid and Interface Science</i> , 2011 , 357, 135-8	9.3	42	
251	Kinetics of Interfacial Tension Changes during Protein Adsorption from Sessile Droplets on FEPITeflon. <i>Journal of Colloid and Interface Science</i> , 1996 , 179, 57-65	9.3	42	
250	Physicochemical Surface Characteristics of Urogenital and Poultry Lactobacilli. <i>Journal of Colloid and Interface Science</i> , 1993 , 156, 319-324	9.3	42	
249	Emergent heterogeneous microenvironments in biofilms: substratum surface heterogeneity and bacterial adhesion force-sensing. <i>FEMS Microbiology Reviews</i> , 2018 , 42, 259-272	15.1	41	
248	Staphylococcal Adhesion, Detachment and Transmission on Nanopillared Si Surfaces. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 30430-30439	9.5	41	
247	Artificial Channels in an Infectious Biofilm Created by Magnetic Nanoparticles Enhanced Bacterial Killing by Antibiotics. <i>Small</i> , 2019 , 15, e1902313	11	41	
246	Chemical Signals and Mechanosensing in Bacterial Responses to Their Environment. <i>PLoS Pathogens</i> , 2015 , 11, e1005057	7.6	41	

245	Bacterial adhesion forces with substratum surfaces and the susceptibility of biofilms to antibiotics. <i>Antimicrobial Agents and Chemotherapy</i> , 2012 , 56, 4961-4	5.9	40
244	Adhesion of coagulase-negative staphylococci grouped according to physico-chemical surface properties. <i>Microbiology (United Kingdom)</i> , 1997 , 143 (Pt 12), 3861-3870	2.9	40
243	Relations between macroscopic and microscopic adhesion of Streptococcus mitis strains to surfaces. <i>Microbiology (United Kingdom)</i> , 2004 , 150, 1015-1022	2.9	39
242	Stress relaxation analysis facilitates a quantitative approach towards antimicrobial penetration into biofilms. <i>PLoS ONE</i> , 2013 , 8, e63750	3.7	39
241	Simultaneous interaction of bacteria and tissue cells with photocatalytically activated, anodized titanium surfaces. <i>Biomaterials</i> , 2014 , 35, 2580-7	15.6	38
240	Force microscopic and thermodynamic analysis of the adhesion between Pseudomonas aeruginosa and Candida albicans. <i>Soft Matter</i> , 2012 , 8, 6454	3.6	38
239	Staphylococcus aureus-fibronectin interactions with and without fibronectin-binding proteins and their role in adhesion and desorption. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 7522-8	4.8	38
238	In vitro interactions between bacteria, osteoblast-like cells and macrophages in the pathogenesis of biomaterial-associated infections. <i>PLoS ONE</i> , 2011 , 6, e24827	3.7	37
237	The risk of biomaterial-associated infection after revision surgery due to an experimental primary implant infection. <i>Biofouling</i> , 2010 , 26, 761-7	3.3	37
236	Detachment of colloidal particles from collector surfaces with different electrostatic charge and hydrophobicity by attachment to air bubbles in a parallel plate flow chamber. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 4423-4427	3.6	37
235	Inhibiting Bacterial Adhesion by Mechanically Modulated Microgel Coatings. <i>Biomacromolecules</i> , 2019 , 20, 243-253	6.9	37
234	Survival of adhering staphylococci during exposure to a quaternary ammonium compound evaluated by using atomic force microscopy imaging. <i>Antimicrobial Agents and Chemotherapy</i> , 2011 , 55, 5010-7	5.9	36
233	Intraoperative contamination influences wound discharge and periprosthetic infection. <i>Clinical Orthopaedics and Related Research</i> , 2006 , 452, 236-41	2.2	36
232	Role of structure and glycosylation of adsorbed protein films in biolubrication. <i>PLoS ONE</i> , 2012 , 7, e426	6090 ₇	35
231	Concepts for increasing gentamicin release from handmade bone cement beads. <i>Monthly Notices of the Royal Astronomical Society: Letters</i> , 2009 , 80, 508-13	4.3	35
230	Extracellular Polymeric Matrix Production and Relaxation under Fluid Shear and Mechanical Pressure in Staphylococcus aureus Biofilms. <i>Applied and Environmental Microbiology</i> , 2018 , 84,	4.8	34
229	Poisson analysis of streptococcal bond strengthening on stainless steel with and without a salivary conditioning film. <i>Langmuir</i> , 2009 , 25, 6227-31	4	34
228	Effect of dairy products on the lifetime of Provox2 voice prostheses in vitro and in vivo. <i>Head and Neck</i> , 2005 , 27, 471-7	4.2	34

227	Adhesive interactions between medically important yeasts and bacteria. <i>FEMS Microbiology Reviews</i> , 1998 , 21, 321-36	15.1	33	
226	Prevention of biofilm formation by dairy products and N-acetylcysteine on voice prostheses in an artificial throat. <i>Acta Oto-Laryngologica</i> , 2004 , 124, 726-31	1.6	33	
225	Conditions of lateral surface confinement that promote tissue-cell integration and inhibit biofilm growth. <i>Biomaterials</i> , 2014 , 35, 5446-52	15.6	32	
224	Mammalian cell growth versus biofilm formation on biomaterial surfaces in an in vitro post-operative contamination model. <i>Microbiology (United Kingdom)</i> , 2010 , 156, 3073-3078	2.9	32	
223	Microbial biofilms on facial prostheses. <i>Biofouling</i> , 2012 , 28, 583-91	3.3	31	
222	Transfer of bacteria between biomaterials surfaces in the operating rooman experimental study. Journal of Biomedical Materials Research - Part A, 2007 , 80, 790-9	5.4	31	
221	Chitosan adsorption to salivary pellicles. European Journal of Oral Sciences, 2007, 115, 303-7	2.3	31	
220	The influence of biosurfactants released by S. mitis BMS on the adhesion of pioneer strains and cariogenic bacteria. <i>Biofouling</i> , 2004 , 20, 261-7	3.3	31	
219	Biofilm formation on ureteral stents - Incidence, clinical impact, and prevention. <i>Swiss Medical Weekly</i> , 2017 , 147, w14408	3.1	31	
218	Substrate viscosity plays an important role in bacterial adhesion under fluid flow. <i>Journal of Colloid and Interface Science</i> , 2019 , 552, 247-257	9.3	30	
217	Antibacterial efficacy of a new gentamicin-coating for cementless prostheses compared to gentamicin-loaded bone cement. <i>Journal of Orthopaedic Research</i> , 2011 , 29, 1654-61	3.8	30	
216	Enterococcus faecalis strains show culture heterogeneity in cell surface charge. <i>Microbiology</i> (United Kingdom), 2006 , 152, 807-814	2.9	30	
215	The release of gentamicin from acrylic bone cements in a simulated prosthesis-related interfacial gap. <i>Journal of Biomedical Materials Research Part B</i> , 2003 , 64, 1-5		30	
214	Enterococcus faecalis surface proteins determine its adhesion mechanism to bile drain materials. <i>Microbiology (United Kingdom)</i> , 2002 , 148, 1863-1870	2.9	30	
213	Antimicrobial efficacy of gentamicin-loaded acrylic bone cements with fusidic acid or clindamycin added. <i>Journal of Orthopaedic Research</i> , 2006 , 24, 291-9	3.8	29	
212	Low-load compression testing: a novel way of measuring biofilm thickness. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 7023-8	4.8	29	
211	Intermolecular forces and enthalpies in the adhesion of Streptococcus mutans and an antigen I/II-deficient mutant to laminin films. <i>Journal of Bacteriology</i> , 2007 , 189, 2988-95	3.5	29	
210	Adhesion and surface-aggregation of Candida albicans from saliva on acrylic surfaces with adhering bacteria as studied in a parallel plate flow chamber. <i>Antonie Van Leeuwenhoek</i> , 1999 , 75, 351-9	2.1	29	

209	Cluster analysis of genotypically characterized Lactobacillus species based on physicochemical cell surface properties and their relationship with adhesion to hexadecane. <i>Canadian Journal of Microbiology</i> , 1997 , 43, 284-291	3.2	28
208	A quantitative method to study co-adhesion of microorganisms in a parallel plate flow chamber. II: Analysis of the kinetics of co-adhesion. <i>Journal of Microbiological Methods</i> , 1995 , 23, 169-182	2.8	28
207	Self-targeting, zwitterionic micellar dispersants enhance antibiotic killing of infectious biofilms-An intravital imaging study in mice. <i>Science Advances</i> , 2020 , 6, eabb1112	14.3	28
206	Osteoblast integration of dental implant materials after challenge by sub-gingival pathogens: a co-culture study in vitro. <i>International Journal of Oral Science</i> , 2015 , 7, 250-8	27.9	27
205	Competitive time- and density-dependent adhesion of staphylococci and osteoblasts on crosslinked poly(ethylene glycol)-based polymer coatings in co-culture flow chambers. <i>Biomaterials</i> , 2011 , 32, 979-8	34 ^{5.6}	27
204	Weibull analyses of bacterial interaction forces measured using AFM. <i>Colloids and Surfaces B: Biointerfaces</i> , 2010 , 78, 372-5	6	27
203	Atomic force microscopy study on specificity and non-specificity of interaction forces between Enterococcus faecalis cells with and without aggregation substance. <i>Microbiology (United Kingdom)</i> , 2005 , 151, 2459-2464	2.9	27
202	Influence of wear and overwear on surface properties of etafilcon A contact lenses and adhesion of Pseudomonas aeruginosa. <i>Investigative Ophthalmology and Visual Science</i> , 2002 , 43, 3646-53		27
201	Recombinant supercharged polypeptides restore and improve biolubrication. <i>Advanced Materials</i> , 2013 , 25, 3426-31	24	26
200	Streptococcus mutans and Streptococcus intermedius adhesion to fibronectin films are oppositely influenced by ionic strength. <i>Langmuir</i> , 2008 , 24, 10968-73	4	26
199	Physicochemical factors influencing bacterial transfer from contact lenses to surfaces with different roughness and wettability. <i>Journal of Biomedical Materials Research Part B</i> , 2004 , 71, 336-42		26
198	Softness of the bacterial cell wall of Streptococcus mitis as probed by microelectrophoresis. <i>Electrophoresis</i> , 2002 , 23, 2007-11	3.6	26
197	Biofilm composition and composite degradation during intra-oral wear. <i>Dental Materials</i> , 2019 , 35, 740-	75 9	26
196	Physico-chemistry of bacterial transmission versus adhesion. <i>Advances in Colloid and Interface Science</i> , 2017 , 250, 15-24	14.3	25
195	Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber: part II: use of fluorescence imaging. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 87, 427-32	6	25
194	Adhesion and viability of waterborne pathogens on p-DADMAC coatings. <i>Biotechnology and Bioengineering</i> , 2008 , 99, 165-9	4.9	25
193	Influence of day and night wear on surface properties of silicone hydrogel contact lenses and bacterial adhesion. <i>Cornea</i> , 2006 , 25, 516-23	3.1	25
192	Increased release of gentamicin from acrylic bone cements under influence of low-frequency ultrasound. <i>Journal of Controlled Release</i> , 2003 , 92, 369-74	11.7	25

(2020-2001)

Adhesive interactions between voice prosthetic yeast and bacteria on silicone rubber in the absence and presence of saliva. <i>Antonie Van Leeuwenhoek</i> , 2001 , 79, 337-43	2.1	25
Antimicrobial activity of synthetic salivary peptides against voice prosthetic microorganisms. <i>Laryngoscope</i> , 2000 , 110, 321-4	3.6	25
Interfacial Free Energies in Protein Solution Droplets on FEP-Teflon by Axisymmetric Drop Shape Analysis by ProfilelgG versus BSA. <i>Journal of Colloid and Interface Science</i> , 1993 , 156, 129-136	9.3	25
Ica-expression and gentamicin susceptibility of Staphylococcus epidermidis biofilm on orthopedic implant biomaterials. <i>Journal of Biomedical Materials Research - Part A</i> , 2011 , 96, 365-71	5.4	24
Adhesion to bile drain materials and physicochemical surface properties of Enterococcus faecalis strains grown in the presence of bile. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 3855-8	4.8	24
Surface Aggregation of Candida albicans on Glass in the Absence and Presence of Adhering Streptococcus gordonii in a Parallel-Plate Flow Chamber: A Surface Thermodynamical Analysis Based on Acid-Base Interactions. <i>Journal of Colloid and Interface Science</i> , 1999 , 212, 495-502	9.3	24
Physicochemical and structural studies on Acinetobacter calcoaceticus RAG-1 and MR-481 wo standard strains in hydrophobicity tests. <i>Current Microbiology</i> , 1991 , 23, 337-341	2.4	24
Coating of a Novel Antimicrobial Nanoparticle with a Macrophage Membrane for the Selective Entry into Infected Macrophages and Killing of Intracellular Staphylococci. <i>Advanced Functional Materials</i> , 2020 , 30, 2004942	15.6	24
Residence-time dependent cell wall deformation of different Staphylococcus aureus strains on gold measured using surface-enhanced-fluorescence. <i>Soft Matter</i> , 2014 , 10, 7638-46	3.6	23
Nanoscopic vibrations of bacteria with different cell-wall properties adhering to surfaces under flow and static conditions. <i>ACS Nano</i> , 2014 , 8, 8457-67	16.7	23
A gentamicin-releasing coating for cementless hip prostheses-Longitudinal evaluation of efficacy using in vitro bio-optical imaging and its wide-spectrum antibacterial efficacy. <i>Journal of Biomedical Materials Research - Part A</i> , 2012 , 100, 3220-6	5.4	23
Removal of two waterborne pathogenic bacterial strains by activated carbon particles prior to and after charge modification. <i>Environmental Science & Environmental Science & </i>	10.3	23
Biofilm formation and design features of indwelling silicone rubber tracheoesophageal voice prosthesesan electron microscopical study. <i>Journal of Biomedical Materials Research Part B</i> , 2001 , 58, 556-63		23
Bacterial Adhesion on Soft Materials: Passive Physicochemical Interactions or Active Bacterial Mechanosensing?. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1801323	10.1	23
A Trans-Atlantic Perspective on Stagnation in Clinical Translation of Antimicrobial Strategies for the Control of Biomaterial-Implant-Associated Infection. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 402-406	5.5	23
Bacterial colonization of polymer brush-coated and pristine silicone rubber implanted in infected pockets in mice. <i>Journal of Antimicrobial Chemotherapy</i> , 2008 , 62, 1323-5	5.1	22
The influence of radiotherapy on the lifetime of silicone rubber voice prostheses in laryngectomized patients. <i>Laryngoscope</i> , 2002 , 112, 1680-3	3.6	22
Antifungal-Inbuilt Metal©rganic-Frameworks Eradicate Candida albicans Biofilms. <i>Advanced Functional Materials</i> , 2020 , 30, 2000537	15.6	21
	Antimicrobial activity of synthetic salivary peptides against voice prosthetic microorganisms. Laryngoscope, 2000, 110, 321-4 Interfacial Free Energies in Protein Solution Droplets on FEP-Teflon by Axisymmetric Drop Shape Analysis by ProfilelgG versus BSA. Journal of Colloid and Interface Science, 1993, 156, 129-136 Ica-expression and gentamicin susceptibility of Staphylococcus epidermidis biofilm on orthopedic implant biomaterials. Journal of Biomedical Materials Research - Part A, 2011, 96, 365-71 Adhesion to bile drain materials and physicochemical surface properties of Enterococcus faecalis strains grown in the presence of bile. Applied and Environmental Microbiology, 2002, 68, 3855-8 Surface Aggregation of Candida albicans on Class in the Absence and Presence of Adhering Streptococcus gordonii in a Parallel-Plate Flow Chamber: A Surface Thermodynamical Analysis Based on Acid-Base interactions. Journal of Colloid and Interface Science, 1999, 212, 495-502 Physicochemical and structural studies on Acinetobacter calcoaceticus RAG-1 and MR-481flwo standard strains in hydrophobicity tests. Current Microbiology, 1991, 23, 337-341 Coating of a Novel Antimicrobial Nanoparticle with a Macrophage Membrane for the Selective Entry into Infected Macrophages and Killing of Intracellular Staphylococcu. Advanced Functional Materials, 2020, 30, 200942 Residence-time dependent cell wall deformation of different Staphylococcus aureus strains on gold measured using surface-enhanced-fluorescence. Soft Matter, 2014, 10, 7638-46 Nanoscopic vibrations of bacteria with different cell-wall properties adhering to surfaces under flow and static conditions. ACS Nano, 2014, 8, 8457-67 A gentamicin-releasing coating for cementless hip prostheses-Longitudinal evaluation of efficacy using in vitro bio-optical maging and its wide-spectrum antibacterial efficacy. Journal of Biomedical Materials Research - Part A, 2012, 100, 3220-6 Removal of two waterborne pathogenic bacterial strains by activated carbon particles prior to and aft	Antimicrobial activity of synthetic salivary peptides against voice prosthetic microorganisms. Laryngoscope, 2000, 110, 321-4 Antimicrobial activity of synthetic salivary peptides against voice prosthetic microorganisms. Laryngoscope, 2000, 110, 321-4 Interfacial Free Energies in Protein Solution Droplets on FEP-Teflon by Axisymmetric Drop Shape Analysis by ProfiletigG versus BSA. Journal of Colloid and Interface Science, 1993, 156, 129-136 1ca-expression and gentamicin susceptibility of Staphylococcus epidermidis biofilm on orthopedic implant biomaterials. Journal of Biomedical Materials Research - Part A, 2011, 96, 365-71 Adhesion to bile drain materials and physicochemical surface properties of Enterococcus faecalis strains grown in the presence of bile. Applied and Environmental Microbiology, 2002, 68, 3855-8 Surface Aggregation of Candida albicans on Class in the Absence and Presence of Adhering Streptococcus gordonii in a Parallel-Plate Flow Chamber: A Surface Thermodynamical Analysis Based on Acid-Base Interactions. Journal of Colloid and Interface Science, 1999, 212, 495-502 Physicochemical and structural studies on Acinetobacter calcoaceticus RAG-1 and MR-481flwo standard strains in hydrophobicity tests. Current Microbiology, 1991, 23, 337-341 2.4 Coating of a Novel Antimicrobial Anapoparticle with a Macrophage Membrane for the Selective Entry into Infected Macrophages and Killing of Intracellular Staphylococci. Advanced Functional Materials, 2020, 30, 2004942 Residence-time dependent cell wall deformation of different Staphylococcus aureus strains on gold measured using surface-enhanced-fluorescence. Soft Matter, 2014, 10, 7638-46 Nanoscopic vibrations of bacteria with different cell-wall properties adhering to surfaces under flow and static conditions. ACS Mano, 2014, 8, 8457-67 A gentamicin-releasing coating for cementless hip prostheses-Longitudinal evaluation of efficacy using in vitro bio-optical imaging and its wide-spectrum antibacterial efficacy. Journal of Biomedical Materials Re

173	Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion. <i>Acta Biomaterialia</i> , 2010 , 6, 4271-6	10.8	21
172	Enthalpy of interaction between coaggregating and non-coaggregating oral bacterial pairsa microcalorimetric study. <i>Journal of Microbiological Methods</i> , 2003 , 55, 241-7	2.8	21
171	Antimicrobial synergy of monolaurin lipid nanocapsules with adsorbed antimicrobial peptides against Staphylococcus aureus biofilms in vitro is absent in vivo. <i>Journal of Controlled Release</i> , 2019 , 293, 73-83	11.7	21
170	Normally Oriented Adhesion versus Friction Forces in Bacterial Adhesion to Polymer-Brush Functionalized Surfaces Under Fluid Flow. <i>Advanced Functional Materials</i> , 2014 , 24, 4435-4441	15.6	20
169	The influence of ionic strength on the adhesive bond stiffness of oral streptococci possessing different surface appendages as probed using AFM and QCM-D. <i>Soft Matter</i> , 2012 , 8, 9870	3.6	20
168	Interaction forces between waterborne bacteria and activated carbon particles. <i>Journal of Colloid and Interface Science</i> , 2008 , 322, 351-7	9.3	20
167	Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. <i>Journal of Ethnopharmacology</i> , 2020 , 246, 112188	5	20
166	Floating and Tether-Coupled Adhesion of Bacteria to Hydrophobic and Hydrophilic Surfaces. <i>Langmuir</i> , 2018 , 34, 4937-4944	4	19
165	Potential benefits of chewing gum for the delivery of oral therapeutics and its possible role in oral healthcare. <i>Expert Opinion on Drug Delivery</i> , 2016 , 13, 1421-31	8	19
164	Detachment and successive re-attachment of multiple, reversibly-binding tethers result in irreversible bacterial adhesion to surfaces. <i>Scientific Reports</i> , 2017 , 7, 4369	4.9	19
163	Mechanism of cell integration on biomaterial implant surfaces in the presence of bacterial contamination. <i>Journal of Biomedical Materials Research - Part A</i> , 2015 , 103, 3590-8	5.4	19
162	SnapShot: Biofilms and biomaterials; mechanisms of medical device related infections. <i>Biomaterials</i> , 2009 , 30, 4247-8	15.6	19
161	Interaction forces between salivary proteins and Streptococcus mutans with and without antigen I/II. <i>Langmuir</i> , 2007 , 23, 9423-8	4	19
160	Adhesion of lactobacilli to urinary catheters and diapers: effect of surface properties. <i>Journal of Biomedical Materials Research Part B</i> , 1994 , 28, 731-4		19
159	Vacuum plasma sprayed coatings using ionic silver doped hydroxyapatite powder to prevent bacterial infection of bone implants. <i>Biointerphases</i> , 2016 , 11, 011012	1.8	19
158	Macrophage phagocytic activity toward adhering staphylococci on cationic and patterned hydrogel coatings versus common biomaterials. <i>Acta Biomaterialia</i> , 2015 , 18, 1-8	10.8	18
157	Voice prosthetic biofilm formation and Candida morphogenic conversions in absence and presence of different bacterial strains and species on silicone-rubber. <i>PLoS ONE</i> , 2014 , 9, e104508	3.7	18
156	Surface thermodynamic and adhesion force evaluation of the role of chitin-binding protein in the physical interaction between Pseudomonas aeruginosa and Candida albicans. <i>Langmuir</i> , 2013 , 29, 4823-	91	18

155	Influence of fluoride-detergent combinations on the visco-elasticity of adsorbed salivary protein films. <i>European Journal of Oral Sciences</i> , 2011 , 119, 21-6	2.3	18	
154	Adhesive bond stiffness of Staphylococcus aureus with and without proteins that bind to an adsorbed fibronectin film. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 99-102	4.8	18	
153	Influence of adhesion to activated carbon particles on the viability of waterborne pathogenic bacteria under flow. <i>Biotechnology and Bioengineering</i> , 2008 , 100, 810-3	4.9	18	
152	Lactobacilli: important in biofilm formation on voice prostheses. <i>Otolaryngology - Head and Neck Surgery</i> , 2007 , 137, 505-7	5.5	18	
151	On the wettability of soft tissues in the human oral cavity. Archives of Oral Biology, 2004, 49, 671-3	2.8	18	
150	Physicochemical characteristics of two pairs of coagulase-negative staphylococcal isolates with different plasmid profiles. <i>Colloids and Surfaces B: Biointerfaces</i> , 1994 , 2, 73-82	6	18	
149	Structural and physicochemical surface properties of Serratia marcescens strains. <i>Canadian Journal of Microbiology</i> , 1992 , 38, 1033-1041	3.2	18	
148	Homogeneous Distribution of Magnetic, Antimicrobial-Carrying Nanoparticles through an Infectious Biofilm Enhances Biofilm-Killing Efficacy. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 205-212	5.5	18	
147	Cell-Membrane-Inspired Silicone Interfaces that Mitigate Proinflammatory Macrophage Activation and Bacterial Adhesion. <i>Langmuir</i> , 2019 , 35, 1882-1894	4	18	
146	Emergent Properties in Streptococcus mutans Biofilms Are Controlled through Adhesion Force Sensing by Initial Colonizers. <i>MBio</i> , 2019 , 10,	7.8	17	
145	Water-Based Scalable Methods for Self-Cleaning Antibacterial ZnO-Nanostructured Surfaces. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 14323-14333	3.9	17	
144	Bacterial Density and Biofilm Structure Determined by Optical Coherence Tomography. <i>Scientific Reports</i> , 2019 , 9, 9794	4.9	17	
143	Surface thermodynamics and adhesion forces governing bacterial transmission in contact lens related microbial keratitis. <i>Journal of Colloid and Interface Science</i> , 2011 , 358, 430-6	9.3	17	
142	Bacterial cell surface heterogeneity: a pathogenß disguise. <i>PLoS Pathogens</i> , 2012 , 8, e1002821	7.6	17	
141	Uropathogenic Escherichia coli adhere to urinary catheters without using fimbriae. <i>FEMS Immunology and Medical Microbiology</i> , 1996 , 16, 159-62		17	
140	A Comparison of Different Approaches To Calculate Surface Free Energies of Protein-Coated Substrata from Measured Contact Angles of Liquids. <i>Langmuir</i> , 1994 , 10, 1314-1318	4	17	
139	Boundary lubrication by brushed salivary conditioning films and their degree of glycosylation. <i>Clinical Oral Investigations</i> , 2012 , 16, 1499-506	4.2	16	
138	Nonadhesive, silica nanoparticles-based brush-coated contact lens casescompromising between ease of cleaning and microbial transmission to contact lenses. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2013 , 101, 640-7	3.5	16	

137	Generalized relationship between numbers of bacteria and their viability in biofilms. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 5027-9	4.8	16
136	Microbial biofilm growth versus tissue integration on biomaterials with different wettabilities and a polymer-brush coating. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 94, 533-8	5.4	16
135	recA mediated spontaneous deletions of the icaADBC operon of clinical Staphylococcus epidermidis isolates: a new mechanism of phenotypic variations. <i>Antonie Van Leeuwenhoek</i> , 2008 , 94, 317-28	2.1	16
134	Surfactive and antibacterial activity of cetylpyridinium chloride formulations in vitro and in vivo. <i>Journal of Clinical Periodontology</i> , 2008 , 35, 547-54	7.7	16
133	Microbubble-induced detachment of coadhering oral bacteria from salivary pellicles. <i>European Journal of Oral Sciences</i> , 2005 , 113, 326-32	2.3	16
132	Bacterial transmission from contact lenses to porcine corneas: an ex vivo study. <i>Investigative Ophthalmology and Visual Science</i> , 2005 , 46, 2042-6		16
131	Initial microbial adhesion events: mechanisms and implications 2000 , 25-36		16
130	The role of physicochemical and structural surface properties in co-adhesion of microbial pairs in a parallel-plate flow chamber. <i>Colloids and Surfaces B: Biointerfaces</i> , 1996 , 7, 101-112	6	16
129	Circumventing antimicrobial-resistance and preventing its development in novel, bacterial infection-control strategies. <i>Expert Opinion on Drug Delivery</i> , 2020 , 17, 1151-1164	8	15
128	Role of interfacial tensions in the translocation of Rhodococcus erythropolis during growth in a two phase culture. <i>Environmental Science & Environmental Science & Environme</i>	10.3	15
127	Oral biofilm models for mechanical plaque removal. Clinical Oral Investigations, 2010, 14, 403-9	4.2	15
126	Residence time dependent desorption of Staphylococcus epidermidis from hydrophobic and hydrophilic substrata. <i>Colloids and Surfaces B: Biointerfaces</i> , 2008 , 67, 276-8	6	15
125	A comparison of the detachment of an adhering oral streptococcal strain stimulated by mouthrinses and a pre-brushing rinse. <i>Biofouling</i> , 1996 , 9, 327-339	3.3	15
124	In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens. <i>International Journal of Oral Science</i> , 2015 , 7, 42-8	27.9	14
123	Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation. <i>Applied Surface Science</i> , 2015 , 356, 325-332	6.7	14
122	Applications and Perspectives of Cascade Reactions in Bacterial Infection Control. <i>Frontiers in Chemistry</i> , 2019 , 7, 861	5	14
121	An in vitro investigation of bacteria-osteoblast competition on oxygen plasma-modified PEEK. Journal of Biomedical Materials Research - Part A, 2014 , 102, 4427-34	5.4	14
120	The influence of Co-Cr and UHMWPE particles on infection persistence: an in vivo study in mice. <i>Journal of Orthopaedic Research</i> , 2012 , 30, 341-7	3.8	14

119	The influence of antimicrobial peptides and mucolytics on the integrity of biofilms consisting of bacteria and yeasts as affecting voice prosthetic air flow resistances. <i>Biofouling</i> , 2003 , 19, 347-53	3.3	14
118	Influence of temperature on the co-adhesion of oral microbial pairs in saliva. <i>European Journal of Oral Sciences</i> , 1996 , 104, 372-7	2.3	14
117	Poly(trimethylene carbonate) as a carrier for rifampicin and vancomycin to target therapy-recalcitrant staphylococcal biofilms. <i>Journal of Orthopaedic Research</i> , 2016 , 34, 1828-1837	3.8	14
116	A nanolayer coating on polydimethylsiloxane surfaces enables a mechanistic study of bacterial adhesion influenced by material surface physicochemistry. <i>Materials Horizons</i> , 2020 , 7, 93-103	14.4	14
115	Efficacy of cleansing agents in killing microorganisms in mixed species biofilms present on silicone facial prosthesesan in vitro study. <i>Clinical Oral Investigations</i> , 2015 , 19, 2285-93	4.2	13
114	Exchange of adsorbed serum proteins during adhesion of Staphylococcus aureus to an abiotic surface and Candida albicans hyphaean AFM study. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 110, 45-50	6	13
113	Plaque-left-behind after brushing: intra-oral reservoir for antibacterial toothpaste ingredients. <i>Clinical Oral Investigations</i> , 2012 , 16, 1435-42	4.2	13
112	Antimicrobial penetration in a dual-species oral biofilm after noncontact brushing: an in vitro study. <i>Clinical Oral Investigations</i> , 2014 , 18, 1103-1109	4.2	13
111	Correlation between genetic, physico-chemical surface characteristics and adhesion of four strains of Lactobacillus. <i>Colloids and Surfaces B: Biointerfaces</i> , 1999 , 13, 75-81	6	13
110	Detection by physico-chemical techniques of an amphiphilic surface component on Streptococcus mitis strains involved in non-electrostatic binding to surfaces. <i>European Journal of Oral Sciences</i> , 1996 , 104, 48-55	2.3	13
109	Impact of solid surface hydrophobicity and micrococcal nuclease production on Staphylococcus aureus Newman biofilms. <i>Scientific Reports</i> , 2020 , 10, 12093	4.9	13
108	Highly Efficient Antimicrobial and Antifouling Surface Coatings with Triclosan-Loaded Nanogels. <i>ACS Applied Materials & Distriction (Communication)</i> 12, 57721-57731	9.5	13
107	Hexametaphosphate effects on tooth surface conditioning film chemistryin vitro and in vivo studies. <i>Journal of Clinical Dentistry</i> , 2002 , 13, 38-43	0.8	13
106	Eradicating Infecting Bacteria while Maintaining Tissue Integration on Photothermal Nanoparticle-Coated Titanium Surfaces. <i>ACS Applied Materials & District Materials & District</i>	9.5	12
105	Adhesion force sensing and activation of a membrane-bound sensor to activate nisin efflux pumps in Staphylococcus aureus under mechanical and chemical stresses. <i>Journal of Colloid and Interface Science</i> , 2018 , 512, 14-20	9.3	12
104	Persistence of a bioluminescent Staphylococcus aureus strain on and around degradable and non-degradable surgical meshes in a murine model. <i>Acta Biomaterialia</i> , 2012 , 8, 3991-6	10.8	12
103	Acute and substantive action of antimicrobial toothpastes and mouthrinses on oral biofilm in vitro. <i>European Journal of Oral Sciences</i> , 2011 , 119, 151-5	2.3	12
102	Recalcitrance of Streptococcus mutans biofilms towards detergent-stimulated detachment. <i>European Journal of Oral Sciences</i> , 1999 , 107, 236-43	2.3	12

101	Antimicrobial Nanogels with Nanoinjection Capabilities for Delivery of the Hydrophobic Antibacterial Agent Triclosan. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 5779-5789	4.3	12
100	Synergy of brushing mode and antibacterial use on in vivo biofilm formation. <i>Journal of Dentistry</i> , 2015 , 43, 1580-6	4.8	11
99	An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1. <i>Npj Biofilms and Microbiomes</i> , 2020 , 6, 46	8.2	11
98	Visualization of microbiological processes underlying stress relaxation in Pseudomonas aeruginosa biofilms. <i>Microscopy and Microanalysis</i> , 2014 , 20, 912-5	0.5	11
97	Biofilm formation on stainless steel and gold wires for bonded retainers in vitro and in vivo and their susceptibility to oral antimicrobials. <i>Clinical Oral Investigations</i> , 2013 , 17, 1209-18	4.2	11
96	Contact-killing of adhering streptococci by a quaternary ammonium compound incorporated in an acrylic resin. <i>International Journal of Artificial Organs</i> , 2012 , 35, 854-63	1.9	11
95	Surface enhanced bacterial fluorescence and enumeration of bacterial adhesion. <i>Biofouling</i> , 2013 , 29, 11-9	3.3	11
94	The influence of subinhibitory concentrations of ampicillin and vancomycin on physico-chemical surface characteristics of Enterococcus faecalis 1131. <i>Colloids and Surfaces B: Biointerfaces</i> , 2002 , 24, 285-295	6	11
93	PAMAM dendrimers with dual-conjugated vancomycin and Ag-nanoparticles do not induce bacterial resistance and kill vancomycin-resistant Staphylococci. <i>Acta Biomaterialia</i> , 2021 , 123, 230-243	10.8	11
92	Liposomes with Water as a pH-Responsive Functionality for Targeting of Acidic Tumor and Infection Sites. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 17714-17719	16.4	11
91	Antimicrobials Influence Bond Stiffness and Detachment of Oral Bacteria. <i>Journal of Dental Research</i> , 2016 , 95, 793-9	8.1	10
90	Extraction of Biofilms From Ureteral Stents for Quantification and Cultivation-Dependent and -Independent Analyses. <i>Frontiers in Microbiology</i> , 2018 , 9, 1470	5.7	10
89	On-demand antimicrobial release from a temperature-sensitive polymer - comparison with ad libitum release from central venous catheters. <i>Journal of Controlled Release</i> , 2014 , 188, 61-6	11.7	10
88	Transcriptional Profiling of in a Two Species Biofilm with. <i>Frontiers in Cellular and Infection Microbiology</i> , 2017 , 7, 311	5.9	10
87	Quantification and qualification of bacteria trapped in chewed gum. <i>PLoS ONE</i> , 2015 , 10, e0117191	3.7	10
86	Influence of Co-Cr particles and Co-Cr ions on the growth of staphylococcal biofilms. <i>International Journal of Artificial Organs</i> , 2011 , 34, 759-65	1.9	10
85	Calorimetric comparison of the interactions between salivary proteins and Streptococcus mutans with and without antigen I/II. <i>Colloids and Surfaces B: Biointerfaces</i> , 2007 , 54, 193-9	6	10
84	Hydrophobicity of peritoneal tissues in the rat. <i>Journal of Colloid and Interface Science</i> , 2002 , 253, 470-1	9.3	10

(2006-2000)

83	Dot assay for determining adhesive interactions between yeasts and bacteria under controlled hydrodynamic conditions. <i>Journal of Microbiological Methods</i> , 2000 , 40, 225-32	2.8	10
82	Role of Viscoelasticity in Bacterial Killing by Antimicrobials in Differently Grown Biofilms. <i>Antimicrobial Agents and Chemotherapy</i> , 2019 , 63,	5.9	10
81	Influence of antibiotic pressure on bacterial bioluminescence, with emphasis on Staphylococcus aureus. <i>International Journal of Antimicrobial Agents</i> , 2015 , 46, 713-7	14.3	9
80	Streptococcus mutans adhesion force sensing in multi-species oral biofilms. <i>Npj Biofilms and Microbiomes</i> , 2020 , 6, 25	8.2	9
79	Keratinocytes protect soft-tissue integration of dental implant materials against bacterial challenges in a 3D-tissue infection model. <i>Acta Biomaterialia</i> , 2019 , 96, 237-246	10.8	9
78	Structural changes in S. epidermidis biofilms after transmission between stainless steel surfaces. <i>Biofouling</i> , 2017 , 33, 712-721	3.3	9
77	Environmental and centrifugal factors influencing the visco-elastic properties of oral biofilms in vitro. <i>Biofouling</i> , 2012 , 28, 913-20	3.3	9
76	The influence of cyclic loading on gentamicin release from acrylic bone cements. <i>Journal of Biomechanics</i> , 2005 , 38, 953-7	2.9	9
75	Accepting higher morbidity in exchange for sacrificing fewer animals in studies developing novel infection-control strategies. <i>Biomaterials</i> , 2020 , 232, 119737	15.6	9
74	Bacterial detachment from salivary conditioning films by dentifrice supernates. <i>Journal of Clinical Dentistry</i> , 2002 , 13, 44-9	0.8	9
73	Preparation and Evaluation of Antimicrobial Hyperbranched Emulsifiers for Waterborne Coatings. <i>Langmuir</i> , 2019 , 35, 5779-5786	4	8
72	Penetration and Accumulation of Dendrons with Different Peripheral Composition in Biofilms. <i>Nano Letters</i> , 2019 , 19, 4327-4333	11.5	8
71	Elastic and viscous bond components in the adhesion of colloidal particles and fibrillated streptococci to QCM-D crystal surfaces with different hydrophobicities using Kelvin-Voigt and Maxwell models. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 25391-25400	3.6	8
70	In vitro oral biofilm formation on triclosan-coated sutures in the absence and presence of additional antiplaque treatment. <i>Journal of Oral and Maxillofacial Surgery</i> , 2011 , 69, 980-5	1.8	8
69	Cholate-stimulated biofilm formation by Lactococcus lactis cells. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 2602-10	4.8	8
68	Force analysis of bacterial transmission from contact lens cases to corneas, with the contact lens as the intermediary 2011 , 52, 2565-70		8
67	Increased adhesion of Enterococcus faecalis strains with bimodal electrophoretic mobility distributions. <i>Colloids and Surfaces B: Biointerfaces</i> , 2008 , 64, 302-6	6	8
66	Biomechanical and surface physico-chemical analyses of used osteosynthesis plates and screwspotential for reuse in developing countries?. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2006 , 79, 236-44	3.5	8

65	Deposition of Polystyrene Particles in a Parallel Plate Flow Chamber under Attractive and Repulsive Electrostatic Conditions. <i>Langmuir</i> , 1999 , 15, 2620-2626	4	8
64	Cascade-targeting Poly(amino acid) Nanoparticles Eliminate Intracellular Bacteria via on-site Antibiotic Delivery <i>Advanced Materials</i> , 2022 , e2109789	24	8
63	Phagocytosis of bacteria adhering to a biomaterial surface in a surface thermodynamic perspective. <i>PLoS ONE</i> , 2013 , 8, e70046	3.7	8
62	Viscous nature of the bond between adhering bacteria and substratum surfaces probed by atomic force microscopy. <i>Langmuir</i> , 2014 , 30, 3165-9	4	7
61	A quantitative model for the surface restructuring of repeatedly plasma treated silicone rubber. <i>Plasmas and Polymers</i> , 1997 , 2, 41-51		7
60	The interaction between saliva and Actinobacillus actinomycetemcomitans influenced by the zeta potential. <i>Antonie Van Leeuwenhoek</i> , 1998 , 73, 279-88	2.1	7
59	A surface physicochemical rationale for calculus formation in the oral cavity. <i>Journal of Crystal Growth</i> , 2004 , 261, 87-92	1.6	7
58	Microcalorimetric study on the influence of temperature on bacterial coaggregation. <i>Journal of Colloid and Interface Science</i> , 2005 , 287, 461-7	9.3	7
57	A constant depth film fermenter to grow microbial biofilms. Protocol Exchange,		7
56	A microfluidic platform for in situ investigation of biofilm formation and its treatment under controlled conditions. <i>Journal of Nanobiotechnology</i> , 2020 , 18, 166	9.4	7
55	Colonization of Intestinal Epithelial Layers in the Presence of Encapsulated for Its Protection against Gastrointestinal Fluids and Antibiotics. <i>ACS Applied Materials & District Action</i> , 13, 15973-	-1 3 5	7
54	Carbon Quantum Dots Derived from Different Carbon Sources for Antibacterial Applications. <i>Antibiotics</i> , 2021 , 10,	4.9	7
53	Possibilities and impossibilities of magnetic nanoparticle use in the control of infectious biofilms. Journal of Materials Science and Technology, 2021 , 69, 69-78	9.1	7
52	Surface enhanced fluorescence and nanoscopic cell wall deformation in adhering Staphylococcus aureus upon exposure to cell wall active and non-active antibiotics. <i>Nanoscale</i> , 2018 , 10, 11123-11133	7.7	7
51	Clinical translation of the assets of biomedical engineering - a retrospective analysis with looks to the future. <i>Expert Review of Medical Devices</i> , 2019 , 16, 913-922	3.5	6
50	Use of hydroxyethyl starch for inducing red blood cell aggregation. <i>Clinical Hemorheology and Microcirculation</i> , 2012 , 52, 27-35	2.5	6
49	Microbial adhesion to surface-grafted polyacrylamide brushes after long-term exposure to PBS and reconstituted freeze-dried saliva. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 94, 997-1000	5.4	6
48	Caffeinated soft drinks reduce bacterial prevalence in voice prosthetic biofilms. <i>Biofouling</i> , 2000 , 16, 69-76	3.3	6

(2018-2020)

47	Two-Stage Interpretation of Changes in TEER of Intestinal Epithelial Layers Protected by Adhering Bifidobacteria During Challenges. <i>Frontiers in Microbiology</i> , 2020 , 11, 599555	5.7	6
46	Antimicrobial loading of nanotubular titanium surfaces favoring surface coverage by mammalian cells over bacterial colonization. <i>Materials Science and Engineering C</i> , 2021 , 123, 112021	8.3	6
45	Water in bacterial biofilms: pores and channels, storage and transport functions. <i>Critical Reviews in Microbiology</i> , 2021 , 1-20	7.8	6
44	Enhanced bacterial killing by vancomycin in staphylococcal biofilms disrupted by novel, DMMA-modified carbon dots depends on EPS production. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 193, 111114	6	5
43	Surface thermodynamic homeostasis of salivary conditioning films through polar-apolar layering. <i>Clinical Oral Investigations</i> , 2012 , 16, 109-15	4.2	5
42	Influence of biofilm lubricity on shear-induced transmission of staphylococcal biofilms from stainless steel to silicone rubber. <i>Microbial Biotechnology</i> , 2017 , 10, 1744-1752	6.3	5
41	Bacterial adhesion forces to Ag-impregnated contact lens cases and transmission to contact lenses. <i>Cornea</i> , 2013 , 32, 326-31	3.1	5
40	Influence of prophylactic antibiotics on tissue integration versus bacterial colonization on poly(methyl methacrylate). <i>International Journal of Artificial Organs</i> , 2012 , 35, 840-6	1.9	5
39	Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion. <i>Cellular Microbiology</i> , 2016 , 18, 605-14	3.9	5
38	Lactobacilli require physical contact to reduce staphylococcal TSST-1 secretion and vaginal epithelial inflammatory response. <i>Pathogens and Disease</i> , 2016 , 74, ftw029	4.2	5
37	Quantification of the viscoelasticity of the bond of biotic and abiotic particles adhering to solid-liquid interfaces using a window-equipped quartz crystal microbalance with dissipation. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 148, 255-262	6	5
36	Thermo-resistance of ESKAPE-panel pathogens, eradication and growth prevention of an infectious biofilm by photothermal, polydopamine-nanoparticles in vitro. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2021 , 32, 102324	6	5
35	Influence of interaction between surface-modified magnetic nanoparticles with infectious biofilm components in artificial channel digging and biofilm eradication by antibiotics and. <i>Nanoscale</i> , 2021 , 13, 4644-4653	7.7	5
34	Secreted products of oral bacteria and biofilms impede mineralization of apical papilla stem cells in TLR-, species-, and culture-dependent fashion. <i>Scientific Reports</i> , 2018 , 8, 12529	4.9	5
33	Measurements of softness of microbial cell surfaces. <i>Methods in Enzymology</i> , 2001 , 337, 270-6	1.7	4
32	Role of adhesion forces in mechanosensitive channel gating in Staphylococcus aureus adhering to surfaces. <i>Npj Biofilms and Microbiomes</i> , 2020 , 6, 31	8.2	4
31	Magnolia bark extract increases oral bacterial cell surface hydrophobicity and improves self-perceived breath freshness when added to chewing gum. <i>Journal of Functional Foods</i> , 2016 , 25, 367	7-374	4
30	Transmission of Monospecies and Dual-Species Biofilms from Smooth to Nanopillared Surfaces. <i>Applied and Environmental Microbiology</i> , 2018 , 84,	4.8	4

29	Contribution of Adsorbed Protein Films to Nanoscopic Vibrations Exhibited by Bacteria Adhering through Ligand-Receptor Bonds. <i>Langmuir</i> , 2015 , 31, 10443-50	4	3
28	Polarization of Macrophages, Cellular Adhesion, and Spreading on Bacterially Contaminated Gold Nanoparticle-Coatings. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 933-945	5.5	3
27	Self-perceived mouthfeel and physico-chemical surface effects after chewing gums containing sorbitol and Magnolia bark extract. <i>European Journal of Oral Sciences</i> , 2017 , 125, 379-384	2.3	3
26	In-biofilm generation of nitric oxide using a magnetically-targetable cascade-reaction container for eradication of infectious biofilms <i>Bioactive Materials</i> , 2022 , 14, 321-334	16.7	3
25	Inheritance of physico-chemical properties and ROS generation by carbon quantum dots derived from pyrolytically carbonized bacterial sources. <i>Materials Today Bio</i> , 2021 , 12, 100151	9.9	3
24	Perspectives on and Need to Develop New Infection Control Strategies 2020 , 95-105		3
23	Visualization of Bacterial Colonization and Cellular Layers in a Gut-on-a-Chip System Using Optical Coherence Tomography. <i>Microscopy and Microanalysis</i> , 2020 , 26, 1211-1219	0.5	3
22	X-Ray Photoelectron Spectroscopy on Microbial Cell Surfaces: A Forgotten Method for the Characterization of Microorganisms Encapsulated With Surface-Engineered Shells. <i>Frontiers in Chemistry</i> , 2021 , 9, 666159	5	3
21	Interfacial interactions between protective, surface-engineered shells and encapsulated bacteria with different cell surface composition. <i>Nanoscale</i> , 2021 , 13, 7220-7233	7.7	3
20	Structured free-water clusters near lubricating surfaces are essential in water-based lubrication. Journal of the Royal Society Interface, 2016 , 13,	4.1	2
19	Bridging the Gap Between In Vitro and In Vivo Evaluation of Biomaterial-Associated Infections 2013 , 107-117		2
18	Simulating Anti-adhesive and Antibacterial Bifunctional Polymers for Surface Coating using BioScape 2013 ,		2
17	Encapsulation of Photothermal Nanoparticles in Stealth and pH-Responsive Micelles for Eradication of Infectious Biofilms In Vitro and In Vivo <i>Nanomaterials</i> , 2021 , 11,	5.4	2
16	Liposomes with Water as a pH-Responsive Functionality for Targeting of Acidic Tumor and Infection Sites. <i>Angewandte Chemie</i> , 2021 , 133, 17855-17860	3.6	2
15	Pentadecanal and pentadecanoic acid coatings reduce biofilm formation of Staphylococcus epidermidis on PDMS. <i>Pathogens and Disease</i> , 2020 , 78,	4.2	1
14	Path-dependency of the interaction between coaggregating and between non-coaggregating oral bacterial pairsa thermodynamic approach. <i>Colloids and Surfaces B: Biointerfaces</i> , 2004 , 37, 53-60	6	1
13	Mikrobielle Werkstoffzerstflung l\$chadensflle und Gegenmaflahmen ffl Kunst- und Naturstoffe. Mikrobiologische Zerstflung von Silikon-Elastomeren. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 1994 , 45, 170-171	1.6	1
12	On-demand pulling-off of magnetic nanoparticles from biomaterial surfaces through implant-associated infectious biofilms for enhanced antibiotic efficacy. <i>Materials Science and Engineering C</i> , 2021 , 131, 112526	8.3	1

LIST OF PUBLICATIONS

11	Clearance of ESKAPE Pathogens from Blood Using Bacterially Activated Macrophage Membrane-Coated Silicon Nanowires. <i>Advanced Functional Materials</i> , 2021 , 31, 2007613	15.6	1
10	Initial adhesion and surface growth of Staphylococcus epidermidis and Pseudomonas aeruginosa on biomedical polymers 2000 , 50, 208		1
9	Uncoupling bacterial attachment on and detachment from polydimethylsiloxane surfaces through empirical and simulation studies <i>Journal of Colloid and Interface Science</i> , 2022 , 622, 419-430	9.3	1
8	Activation of a passive, mesoporous silica nanoparticle layer through attachment of bacterially-derived carbon-quantum-dots for protection and functional enhancement of probiotics. <i>Materials Today Bio</i> , 2022 , 100293	9.9	1
7	Micrococcal Nuclease stimulates Biofilm Formation in a Murine Implant Infection Model <i>Frontiers in Cellular and Infection Microbiology</i> , 2021 , 11, 799845	5.9	O
6	Lubricating properties of chewing stimulated whole saliva from patients suffering from xerostomia. <i>Clinical Oral Investigations</i> , 2021 , 25, 4459-4469	4.2	O
5	Influence of sub-inhibitory concentrations of antimicrobials on micrococcal nuclease and biofilm formation in Staphylococcus aureus. <i>Scientific Reports</i> , 2021 , 11, 13241	4.9	0
4	Recent advances and future challenges in the use of nanoparticles for the dispersal of infectious biofilms. <i>Journal of Materials Science and Technology</i> , 2021 , 84, 208-218	9.1	O
3	Staphylococcal Colonization of E-Beam Patterned Surfaces. <i>Microscopy and Microanalysis</i> , 2014 , 20, 11	84 0 1 5 18	5
2	Biofilm Formation Assay on Essential Oil Coated Silicone Rubber. <i>Bio-protocol</i> , 2021 , 11, e3941	0.9	
1	Nonviral Expression of LL-37 in a Human Skin Equivalent to Prevent Infection in Skin Wounds. <i>Human Gene Therapy</i> , 2021 , 32, 1147-1157	4.8	