
Viktor Korzun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7544954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Microsatellite Map of Wheat. Genetics, 1998, 149, 2007-2023.	1.2	2,041
2	Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8057-8062.	3.3	1,065
3	Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nature Genetics, 2012, 44, 1388-1392.	9.4	477
4	Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theoretical and Applied Genetics, 2002, 105, 413-422.	1.8	339
5	Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 1998, 96, 1104-1109.	1.8	289
6	Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Science, 2005, 168, 195-202.	1.7	266
7	Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. Journal of Experimental Botany, 2013, 64, 5411-5428.	2.4	239
8	Towards a wholeâ€genome sequence for rye (<i>Secale cereale</i> L.). Plant Journal, 2017, 89, 853-869.	2.8	238
9	Marker-Assisted Selection for Disease Resistance in Wheat and Barley Breeding. Phytopathology, 2012, 102, 560-566.	1.1	223
10	The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica, 1998, 100, 385-394.	0.6	217
11	Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC Plant Biology, 2011, 11, 1.	1.6	214
12	Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theoretical and Applied Genetics, 1998, 96, 1110-1120.	1.8	204
13	Reticulate Evolution of the Rye Genome. Plant Cell, 2013, 25, 3685-3698.	3.1	194
14	Whole Genome Association Mapping of Fusarium Head Blight Resistance in European Winter Wheat (Triticum aestivum L.). PLoS ONE, 2013, 8, e57500.	1.1	166
15	The relationships between the dwarfing genes of wheat and rye. Euphytica, 1996, 89, 69-75.	0.6	163
16	Whole Genome Association Mapping of Plant Height in Winter Wheat (Triticum aestivum L.). PLoS ONE, 2014, 9, e113287.	1.1	162
17	Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L.). BMC Plant Biology, 2014, 14, 191.	1.6	161
18	Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theoretical and Applied Genetics, 2013, 126, 1477-1486	1.8	151

#	Article	IF	CITATIONS
19	About the origin of 1RS.1BL wheat-rye chromosome translocations from Germany. Plant Breeding, 1997, 116, 537-540.	1.0	146
20	Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nature Genetics, 2021, 53, 564-573.	9.4	138
21	Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theoretical and Applied Genetics, 2005, 111, 747-756.	1.8	137
22	Construction and analysis of a microsatellite-based database of European wheat varieties. Theoretical and Applied Genetics, 2002, 106, 67-73.	1.8	134
23	Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theoretical and Applied Genetics, 2006, 112, 562-569.	1.8	133
24	Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
25	Genomic selection in a commercial winter wheat population. Theoretical and Applied Genetics, 2016, 129, 641-651.	1.8	129
26	Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theoretical and Applied Genetics, 2011, 123, 283-292.	1.8	124
27	Association mapping for quality traits in soft winter wheat. Theoretical and Applied Genetics, 2011, 122, 961-970.	1.8	120
28	A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theoretical and Applied Genetics, 2001, 102, 709-717.	1.8	118
29	Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theoretical and Applied Genetics, 2004, 109, 725-732.	1.8	111
30	Molecular characterization of the genetic integrity of wheat (Triticum aestivum L.) germplasm after long-term maintenance. Theoretical and Applied Genetics, 2000, 100, 494-497.	1.8	104
31	Microsatellite analysis of Aegilops tauschii germplasm. Theoretical and Applied Genetics, 2000, 101, 100-106.	1.8	103
32	Intrachromosomal mapping of genes for dwarfing (Rht12) and vernalization response (Vrn1) in wheat by using RFLP and microsatellite markers. Plant Breeding, 1997, 116, 227-232.	1.0	102
33	A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Molecular Biology, 2002, 48, 767-789.	2.0	95
34	Molecular markers: actual and potential contributions to wheat genome characterization and breeding. Euphytica, 2007, 156, 271-296.	0.6	95
35	Potential and limits of whole genome prediction of resistance to Fusarium head blight and Septoria tritici blotch in a vast Central European elite winter wheat population. Theoretical and Applied Genetics, 2015, 128, 2471-2481.	1.8	92
36	Inheritance of resistance to Fusarium head blight in three European winter wheat populations. Theoretical and Applied Genetics, 2008, 117, 1119-1128.	1.8	91

#	Article	IF	CITATIONS
37	Potential and limits to unravel the genetic architecture and predict the variation of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). Heredity, 2015, 114, 318-326.	1.2	88
38	Comparison of phenotypic and marker-based selection for Fusarium head blight resistance and DON content in spring wheat. Molecular Breeding, 2007, 19, 357-370.	1.0	86
39	Genetic architecture of main effect QTL for heading date in European winter wheat. Frontiers in Plant Science, 2014, 5, 217.	1.7	86
40	Abscisic Acid Flux Alterations Result in Differential Abscisic Acid Signaling Responses and Impact Assimilation Efficiency in Barley under Terminal Drought Stress. Plant Physiology, 2014, 164, 1677-1696.	2.3	85
41	Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.). Theoretical and Applied Genetics, 2016, 129, 2043-2053.	1.8	84
42	Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theoretical and Applied Genetics, 1999, 98, 1202-1207.	1.8	76
43	Evolutionary Conserved Function of Barley and Arabidopsis 3-KETOACYL-CoA SYNTHASES in Providing Wax Signals for Germination of Powdery Mildew Fungi À Â. Plant Physiology, 2014, 166, 1621-1633.	2.3	76
44	Addressing Research Bottlenecks to Crop Productivity. Trends in Plant Science, 2021, 26, 607-630.	4.3	76
45	Genome-wide association mapping of tan spot resistance (Pyrenophora tritici-repentis) in European winter wheat. Molecular Breeding, 2014, 34, 363-371.	1.0	72
46	Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome, 2004, 47, 36-45.	0.9	70
47	Association mapping for Fusarium head blight resistance in European soft winter wheat. Molecular Breeding, 2011, 28, 647-655.	1.0	70
48	Dissecting the genetic architecture of frost tolerance in Central European winter wheat. Journal of Experimental Botany, 2013, 64, 4453-4460.	2.4	69
49	Genetic architecture of complex agronomic traits examined in two testcross populations of rye (Secale cereale L.). BMC Genomics, 2012, 13, 706.	1.2	66
50	Molecular studies on genetic integrity of open-pollinating species rye (Secale cereale L.) after long-term genebank maintenance. Theoretical and Applied Genetics, 2003, 107, 1469-1476.	1.8	64
51	A genetic linkage map of rye (Secale cereale L.). Theoretical and Applied Genetics, 1998, 96, 203-208.	1.8	63
52	Microsatellite mapping of the induced sphaerococcoid mutation genes in Triticum aestivum. Theoretical and Applied Genetics, 2000, 100, 686-689.	1.8	63
53	Comparative molecular mapping of GA insensitive Rht loci on chromosomes 4B and 4D of common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 1997, 95, 1133-1137.	1.8	62
54	Locating introgressions of Hordeum bulbosum chromatin within the H. vulgare genome. Theoretical and Applied Genetics, 2000, 100, 27-31.	1.8	62

#	Article	IF	CITATIONS
55	Genetic architecture of resistance to Septoria tritici blotch in European wheat. BMC Genomics, 2013, 14, 858.	1.2	62
56	The roles of pleiotropy and close linkage as revealed by association mapping of yield and correlated traits of wheat (Triticum aestivum L.). Journal of Experimental Botany, 2017, 68, 4089-4101.	2.4	61
57	RFLP mapping of the dwarfing (Ddw1) and hairy peduncle (Hp) genes on chromosome 5 of rye (Secale) Tj ETQq1	1 0.7843 1.8	14 rgBT /Ove
58	Microsatellite markers – a new tool for distinguishing diploid wheat species. Genetic Resources and Crop Evolution, 2000, 47, 497-505.	0.8	58
59	Single nucleotide polymorphisms in rye (Secale cereale L.): discovery, frequency, and applications for genome mapping and diversity studies. Theoretical and Applied Genetics, 2007, 114, 1105-1116.	1.8	58
60	Genetic mapping of QTL controlling tissue-culture response on chromosome 2B of wheat (Triticum) Tj ETQq0 0 0 1047-1052.	rgBT /Ove 1.8	erlock 10 Tf 5 56
61	Title is missing!. Euphytica, 2001, 119, 157-161.	0.6	56
62	Evaluation of Genetic Diversity Among Bulgarian Winter Wheat (Triticum aestivum L.) Varieties During the Period 1925–2003 Using Microsatellites. Genetic Resources and Crop Evolution, 2006, 53, 1605-1614.	0.8	55
63	High levels of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cerealeL.) genes involved in frost response. BMC Plant Biology, 2011, 11, 6.	1.6	55
64	Genetic architecture of resistance to Septoria tritici blotch (Mycosphaerella graminicola) in European winter wheat. Molecular Breeding, 2013, 32, 411-423.	1.0	54
65	Title is missing!. Euphytica, 1997, 95, 149-155.	0.6	53
66	Comparative genetic mapping of loci affecting plant height and development in cereals. Euphytica, 1998, 100, 245-248.	0.6	52
67	Leaf Variegation and Impaired Chloroplast Development Caused by a Truncated CCT Domain Gene in <i>albostrians</i> Barley. Plant Cell, 2019, 31, 1430-1445.	3.1	52
68	Prediction of malting quality traits in barley based on genome-wide marker data to assess the potential of genomic selection. Theoretical and Applied Genetics, 2016, 129, 203-213.	1.8	51
69	Mapping of three self-fertility mutations in rye (Secale cereale L.) using RFLP, isozyme and morphological markers. Theoretical and Applied Genetics, 1998, 97, 147-153.	1.8	50
70	Accuracy of within- and among-family genomic prediction for Fusarium head blight and Septoria tritici blotch in winter wheat. Theoretical and Applied Genetics, 2019, 132, 1121-1135.	1.8	50
71	Establishment of introgression libraries in hybrid rye (Secale cereale L.) from an Iranian primitive accession as a new tool for rye breeding and genomics. Theoretical and Applied Genetics, 2008, 117, 641-652.	1.8	49
72	Effect of the <i>Rhtâ€D1</i> dwarfing locus on <i>Fusarium</i> head blight rating in three segregating populations of winter wheat. Plant Breeding, 2008, 127, 333-339.	1.0	49

#	Article	IF	CITATIONS
73	Validating the prediction accuracies of marker-assisted and genomic selection of Fusarium head blight resistance in wheat using an independent sample. Theoretical and Applied Genetics, 2017, 130, 471-482.	1.8	49
74	Genetic mapping of quantitative trait loci in rye (Secale cereale L.). Euphytica, 2000, 116, 203-209.	0.6	48
75	Association analysis of frost tolerance in rye using candidate genes and phenotypic data from controlled, and field phenotyping platforms. BMC Plant Biology, 2011, 11, 146.	1.6	47
76	A consensus map of rye integrating mapping data from five mapping populations. Theoretical and Applied Genetics, 2009, 118, 793-800.	1.8	46
77	Genetics and molecular mapping of a male fertility restoration locus (Rfg1) in rye (Secale cereale L.). Theoretical and Applied Genetics, 1998, 97, 99-102.	1.8	44
78	The application of wheat microsatellites to identify disomic Triticum aestivum-Aegilops markgrafii addition lines. Theoretical and Applied Genetics, 1998, 96, 138-146.	1.8	43
79	Assessment of the uniformity of wheat and tomato varieties at DNA microsatellite loci. Euphytica, 2003, 132, 331-341.	0.6	43
80	Agronomic and Quality Performance of Winter Wheat Backcross Populations Carrying Nonâ€Adapted Fusarium Head Blight Resistance QTL. Crop Science, 2010, 50, 2283-2290.	0.8	43
81	Quantitative Trait Loci for Adult-Plant Resistance to <i>Mycosphaerella graminicola</i> in Two Winter Wheat Populations. Phytopathology, 2011, 101, 1209-1216.	1.1	43
82	Adaptive selection of founder segments and epistatic control of plant height in the MAGIC winter wheat population WM-800. BMC Genomics, 2018, 19, 559.	1.2	43
83	Broad-spectrum resistance loci for three quantitatively inherited diseases in two winter wheat populations. Molecular Breeding, 2012, 29, 731-742.	1.0	42
84	Genome-wide association mapping of resistance to eyespot disease (Pseudocercosporella) Tj ETQq0 0 0 rgBT /O Theoretical and Applied Genetics, 2017, 130, 505-514.	verlock 10 1.8) Tf 50 307 Td 42
85	RFLP-based mapping of three mutant loci in rye (Secale cereale L.) and their relation to homoeologous loci within the Gramineae. Theoretical and Applied Genetics, 1997, 95, 468-473.	1.8	41
86	Marker-based introduction of three quantitative-trait loci conferring resistance to Fusarium head blight into an independent elite winter wheat breeding population. Theoretical and Applied Genetics, 2008, 117, 29-35.	1.8	41
87	Marker selection for Fusarium head blight resistance based on quantitative trait loci (QTL) from two European sources compared to phenotypic selection in winter wheat. Euphytica, 2009, 166, 219-227.	0.6	41
88	Prospects of GWAS and predictive breeding for European winter wheat's grain protein content, grain starch content, and grain hardness. Scientific Reports, 2020, 10, 12541.	1.6	41
89	Molecular mapping of major genes and quantitative trait loci determining flowering time in response to photoperiod in barley. Plant Breeding, 2002, 121, 129-132.	1.0	40
90	Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T.Âaestivum) and rye (S.Âcereale). Theoretical and Applied Genetics, 2009, 119, 867-874.	1.8	39

#	Article	IF	CITATIONS
91	Molecular marker assisted broadening of the Central European heterotic groups in rye with Eastern European germplasm. Theoretical and Applied Genetics, 2010, 120, 291-299.	1.8	39
92	A consensus linkage map of rye (Secale cereale L.) including 374 RFLPs, 24 isozymes and 15 gene loci. Theoretical and Applied Genetics, 1998, 97, 1279-1288.	1.8	37
93	Effects of Two Major Fusarium Head Blight Resistance QTL Verified in a Winter Wheat Backcross Population. Crop Science, 2007, 47, 1823-1831.	0.8	37
94	Occurrence of three dwarfing Rht genes in German winter wheat varieties. Cereal Research Communications, 2008, 36, 553-560.	0.8	37
95	Development of conserved ortholog set markers linked to the restorer gene Rfp1 in rye. Molecular Breeding, 2012, 30, 1507-1518.	1.0	37
96	Mapping the GA3-insensitive dwarfing gene ct1 on chromosome 7 in rye. Plant Breeding, 1995, 114, 113-116.	1.0	35
97	Identification, distribution and effects on agronomic traits of the semi-dwarfing Rht alleles in Bulgarian common wheat cultivars. Euphytica, 2005, 145, 305-315.	0.6	35
98	Molecular mapping of quantitative trait loci for field resistance to Fusarium head blight in a European winter wheat population. Plant Breeding, 2008, 127, 459-464.	1.0	33
99	Genome–metabolite associations revealed low heritability, high genetic complexity, and causal relations for leaf metabolites in winter wheat (<i>Triticum aestivum</i>). Journal of Experimental Botany, 2017, 68, erw441.	2.4	33
100	Genome-wide mapping and prediction suggests presence of local epistasis in a vast elite winter wheat populations adapted to Central Europe. Theoretical and Applied Genetics, 2017, 130, 635-647.	1.8	32
101	Detection of quantitative trait loci on chromosome 5R of rye (Secale cereale L.). Theoretical and Applied Genetics, 1999, 98, 1087-1090.	1.8	31
102	Distribution of the wheat-rye translocation 1RS.1BL among bread wheat varieties of Bulgaria. Plant Breeding, 2006, 125, 102-104.	1.0	31
103	Molecular mapping of two dwarfing genes differing in their GA response on chromosome 2H of barley. Theoretical and Applied Genetics, 1999, 99, 670-675.	1.8	28
104	An experimental approach for estimating the genomic selection advantage for Fusarium head blight and Septoria tritici blotch in winter wheat. Theoretical and Applied Genetics, 2019, 132, 2425-2437.	1.8	28
105	Allele Mining in Barley Genetic Resources Reveals Genes of Race-Non-Specific Powdery Mildew Resistance. Frontiers in Plant Science, 2011, 2, 113.	1.7	27
106	Rht24 reduces height in the winter wheat population â€~SolitäÂ×ÂBussard' without adverse effects on Fusarium head blight infection. Theoretical and Applied Genetics, 2018, 131, 1263-1272.	1.8	26
107	Identification of QTL hot spots for malting quality in two elite breeding lines with distinct tolerance to abiotic stress. BMC Plant Biology, 2018, 18, 106.	1.6	25
108	Use of nonâ€adapted quantitative trait loci for increasing Fusarium head blight resistance for breeding semiâ€dwarf wheat. Plant Breeding, 2019, 138, 140-147.	1.0	25

#	Article	IF	CITATIONS
109	Genes, marker and linkage data of rye (Secale cereale L.): 5th updated inventory. Euphytica, 1998, 101, 23-67.	0.6	24
110	Comparative mapping of a gibberellic acid-insensitive dwarfing gene (Dwf2) on chromosome 4HS in barley. Theoretical and Applied Genetics, 1999, 98, 728-731.	1.8	24
111	Microsatellites confirm the authenticity of inter-varietal chromosome substitution lines of wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2000, 101, 95-99.	1.8	24
112	Fine mapping of the restorer gene Rfp3 from an Iranian primitive rye (Secale cereale L.). Theoretical and Applied Genetics, 2017, 130, 1179-1189.	1.8	23
113	Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat. Science Advances, 2021, 7, .	4.7	22
114	Linkage mapping of mutant loci in rye (Secale cereale L.). Theoretical and Applied Genetics, 2001, 103, 70-74.	1.8	21
115	Exploring new alleles for frost tolerance in winter rye. Theoretical and Applied Genetics, 2017, 130, 2151-2164.	1.8	20
116	Genetic diversity assessment of Bulgarian durum wheat (Triticum durum Desf.) landraces and modern cultivars using microsatellite markers. Genetic Resources and Crop Evolution, 2010, 57, 273-285.	0.8	17
117	Geography and end use drive the diversification of worldwide winter rye populations. Molecular Ecology, 2016, 25, 500-514.	2.0	17
118	Snow mold of winter cereals: a complex disease and a challenge for resistance breeding. Theoretical and Applied Genetics, 2021, 134, 419-433.	1.8	17
119	The influence of photoperiod genes on the adaptability of European winter wheats. Developments in Plant Breeding, 1997, , 517-526.	0.2	17
120	Title is missing!. Russian Journal of Genetics, 2001, 37, 894-898.	0.2	15
121	The contribution of the gibberellin-insensitive semi-dwarfing (Rht) genes to genetic variation in wheat seedling growth in response to osmotic stress. Journal of Agricultural Science, 2008, 146, 275-286.	0.6	15
122	Seedling growth under osmotic stress and agronomic traits in Bulgarian semi-dwarf wheat: comparison of genotypes with Rht8 and/or Rht-B1 genes. Crop and Pasture Science, 2011, 62, 1017.	0.7	15
123	OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security. Plants, 2021, 10, 1423.	1.6	15
124	Isolation of a chromosomally engineered durum wheat line carrying the <i>Aegilops ventricosa Pch1</i> gene for resistance to eyespot. Genome, 2001, 44, 345-349.	0.9	14
125	Exploiting the Repetitive Fraction of the Wheat Genome for Highâ€Throughput Singleâ€Nucleotide Polymorphism Discovery and Genotyping. Plant Genome, 2016, 9, plantgenome2015.09.0078.	1.6	13
	Rye Snow Mold-Associated Microdochium nivale Strains Inhabiting a Common Area: Variability in		

Genetics, Morphotype, Extracellular Enzymatic Activities, and Virulence. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT (@verlock1b0 Tf 50 5)

#	Article	IF	CITATIONS
127	Use of molecular markers in cereal breeding. Cellular and Molecular Biology Letters, 2002, 7, 811-20.	2.7	13
128	Chromosomal location and genetic mapping of the mismatch repair gene homologs <i>MSH2</i> , <i>MSH3</i> , and <i>MSH6</i> in rye and wheat. Genome, 1999, 42, 1255-1257.	0.9	12
129	RFLP mapping of the dwarfing (Ddw1) and hairy peduncle (Hp) genes on chromosome 5 of rye (Secale) Tj ETQq1	10,7843 1.8	814 rgBT /Ove
130	Validation and utilisation of <i>Rht</i> dwarfing gene specific. Cereal Research Communications, 2008, 36, 235-246.	0.8	10
131	Phenotypic selection for high resistance to <i>Fusarium</i> head blight after introgression of quantitative trait loci (QTL) from exotic spring wheat and verification by simple sequence repeat markers <i>a posteriori</i> . Plant Breeding, 2008, 127, 217-221.	1.0	10
132	Assessing the Barley Genome Zipper and Genomic Resources for Breeding Purposes. Plant Genome, 2015, 8, eplantgenome2015.06.0045.	1.6	10
133	RFLP mapping of a gene for hairy leaf sheath using a recombinant line from Hordeum vulgare L. ×Hordeum bulbosum L. cross. Genome, 1999, 42, 960-961.	0.9	9
134	The World Importance of Barley and Challenges to Further Improvements. Biotechnology in Agriculture and Forestry, 2014, , 3-19.	0.2	9
135	Isolation of a chromosomally engineered durum wheat line carrying the <i>Aegilops ventricosa Pch1</i> gene for resistance to eyespot. Genome, 2001, 44, 345-349.	0.9	9
136	RFLP-based mapping of the Sec-2 and Sec-5 loci encoding 75K gamma-secalins of rye. Plant Breeding, 1998, 117, 329-333.	1.0	8
137	Diagnostic value of molecular markers linked to the eyespot resistance gene Pch1 in wheat. Euphytica, 2011, 177, 267-275.	0.6	8
138	Genomics-Based Hybrid Rye Breeding. , 2019, , 329-348.		8
139	Mapping Stem Rust (Puccinia graminis f. sp. secalis) Resistance in Self-Fertile Winter Rye Populations. Frontiers in Plant Science, 2020, 11, 667.	1.7	8
140	Allelic Variation at the Dwarfing Gene Rht8 Locus and Its Significance in International Breeding Programmes. Developments in Plant Breeding, 2001, , 747-753.	0.2	8
141	Isolation of a chromosomally engineered durum wheat line carrying the Aegilops ventricosa pchl gene for resistance to eyespot. Genome, 2001, 44, 345-9.	0.9	8
142	Capturing Wheat Phenotypes at the Genome Level. Frontiers in Plant Science, 0, 13, .	1.7	8
143	Chromosomal location of three wheat sequences with homology to pollen allergen encoding, DNA replication regulating, and DNA (cytosine-5)-methyltransferase genes in wheat and rye. Genome, 1996, 39, 1213-1215.	0.9	7
144	Genetic diversity of old bread wheat germplasm from the Black Sea region evaluated by microsatellites and agronomic traits. Plant Genetic Resources: Characterisation and Utilisation, 2015, 13, 119-130.	0.4	7

#	Article	IF	CITATIONS
145	Effective Pollen-Fertility Restoration Is the Basis of Hybrid Rye Production and Ergot Mitigation. Plants, 2022, 11, 1115.	1.6	7
146	Chromosomal Assignment of the Genes Encoding Glutamyl-tRNA Reductase in Barley, Wheat, and Rye and Their Organization in the Barley Genome. Hereditas, 2004, 124, 1-6.	0.5	6
147	Assessing genetic diversity of wheat genotypes from different origins by SNP markers. Cereal Research Communications, 2016, 44, 361-369.	0.8	6
148	Oligogenic control of resistance to soilâ€borne viruses <scp>SBCMV</scp> and <scp>WSSMV</scp> in rye (<i>Secale cereale</i> ÂL.). Plant Breeding, 2016, 135, 552-559.	1.0	6
149	Verification of marker–trait associations in biparental winter barley (Hordeum vulgare L.) DH populations. Molecular Breeding, 2016, 36, 1.	1.0	6
150	Alterations in the Transcriptome of Rye Plants following the Microdochium nivale Infection: Identification of Resistance/Susceptibility-Related Reactions Based on RNA-Seq Analysis. Plants, 2021, 10, 2723.	1.6	6
151	Differences in recombination frequency during male and female gametogenesis in rye, Secale cereale L Plant Breeding, 1996, 115, 422-424.	1.0	5
152	Molecular Maps in Cereals: Methodology and Progress. , 2004, , 35-82.		5
153	Nitrogen-metabolism related genes in barley - haplotype diversity, linkage mapping and associations with malting and kernel quality parameters. BMC Genetics, 2013, 14, 77.	2.7	5
154	Genetic mapping of the labile (lab) gene: a recessive locus causing irregular spikelet fertility in labile-barley (Hordeum vulgare convar. labile). Theoretical and Applied Genetics, 2014, 127, 1123-1131.	1.8	5
155	Rye. , 2007, , 107-117.		4
156	Inheritance and molecular mapping of a gene determining vernalisation response in the Siberian spring rye variety â€~Onokhoyskaya'. Cereal Research Communications, 2001, 29, 259-265.	0.8	4
157	Economic and Academic Importance of Rye. Compendium of Plant Genomes, 2021, , 1-12.	0.3	4
158	Notes on the origin of 4BL-5RL rye translocations in common wheat (<i>Triticum aestivum</i> L.). Cereal Research Communications, 2008, 36, 373-385.	0.8	3
159	Association mapping of wheat Fusarium head blight resistance-related regions using a candidate-gene approach and their verification in a biparental population. Theoretical and Applied Genetics, 2020, 133, 341-351.	1.8	3
160	Reciprocal Recurrent Genomic Selection Is Impacted by Genotype-by-Environment Interactions. Frontiers in Plant Science, 2021, 12, 703419.	1.7	3
161	Comparative genetic mapping of loci affecting plant height and development in cereals. Developments in Plant Breeding, 1997, , 311-314.	0.2	3
162	Genetic Fine Mapping of a Novel Leaf Rust Resistance Gene and a Barley Yellow Dwarf Virus Tolerance (BYDV) Introgressed from Hordeum bulbosum by the Use of the 9K iSelect Chip. , 2013, , 269-284.		2

#	Article	IF	CITATIONS
163	Bridging the Genotype–Phenotype Gap for Precision Breeding in Rye. Compendium of Plant Genomes, 2021, , 135-180.	0.3	1
164	Genomics of Self-Incompatibility and Male-Fertility Restoration in Rye. Compendium of Plant Genomes, 2021, , 181-212.	0.3	1
165	"In Much Knowledge There Is Much Grief". Russian Education and Society, 2001, 43, 6-56.	0.1	0
166	Microsatellite genetic diversity analysis and allelic variation comparison of obsolete and modern Bulgarian bread wheat (Triticum aestivumL.) varieties. Cereal Research Communications, 2012, 40, 14-23.	0.8	0
167	Editorial: Genetics Became to be Genomics. , 2019, , xvii-xxii.		0
168	Introgression breeding - Effects and side effects of marker-based introduction of two non-adapted QTL for Fusarium head blight resistance into elite wheat. Plant Breeding and Seed Science, 2011, 63, 129-136.	0.1	0