Wilson C K Poon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7544937/publications.pdf

Version: 2024-02-01

210 papers

17,112 citations

70 h-index 126 g-index

218 all docs

218 docs citations

times ranked

218

10177 citing authors

#	Article	IF	CITATIONS
1	Equilibrium cluster formation in concentrated protein solutions and colloids. Nature, 2004, 432, 492-495.	13.7	958
2	Phase Behaviour of Colloid + Polymer Mixtures. Europhysics Letters, 1992, 20, 559-564.	0.7	900
3	Molecular segregation observed in a concentrated alcohol–water solution. Nature, 2002, 416, 829-832.	13.7	862
4	Multiple Glassy States in a Simple Model System. Science, 2002, 296, 104-106.	6.0	703
5	Phase behavior of a model colloid-polymer mixture. Physical Review E, 1995, 51, 1344-1352.	0.8	555
6	The physics of a model colloidÂpolymer mixture. Journal of Physics Condensed Matter, 2002, 14, R859-R880.	0.7	421
7	Bicontinuous emulsions stabilized solely by colloidal particles. Nature Materials, 2007, 6, 966-971.	13.3	389
8	Spinodal-Assisted Crystallization in Polymer Melts. Physical Review Letters, 1998, 81, 373-376.	2.9	367
9	Ionic effects in self-propelled Pt-coated Janus swimmers. Soft Matter, 2014, 10, 4016-4027.	1.2	292
10	Hydrodynamic and Contact Contributions to Continuous Shear Thickening in Colloidal Suspensions. Physical Review Letters, 2015, 115, 228304.	2.9	267
11	Phase separation and rotor self-assembly in active particle suspensions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4052-4057.	3.3	258
12	Yielding behavior of repulsion- and attraction-dominated colloidal glasses. Journal of Rheology, 2008, 52, 649-676.	1.3	249
13	The 2020 motile active matter roadmap. Journal of Physics Condensed Matter, 2020, 32, 193001.	0.7	242
14	In search of colloidal hard spheres. Soft Matter, 2013, 9, 17-27.	1.2	220
15	Colloid–liquid-crystal composites: An unusual soft solid. Physical Review E, 2000, 61, R6083-R6086.	0.8	211
16	Three-Dimensional Imaging of Colloidal Glasses under Steady Shear. Physical Review Letters, 2007, 99, 028301.	2.9	209
17	Viscosity and Structural Relaxation in Suspensions of Hard-Sphere Colloids. Physical Review Letters, 1995, 75, 958-961.	2.9	208
18	Gelation in colloid–polymer mixtures. Faraday Discussions, 1995, 101, 65-76.	1.6	207

#	Article	IF	Citations
19	Glasses in hard spheres with short-range attraction. Physical Review E, 2004, 69, 011503.	0.8	202
20	PHYSICS: Colloids as Big Atoms. Science, 2004, 304, 830-831.	6.0	194
21	Towards a Unified Description of the Rheology of Hard-Particle Suspensions. Physical Review Letters, 2015, 115, 088304.	2.9	194
22	Hard spheres: crystallization and glass formation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 4993-5011.	1.6	191
23	On measuring colloidal volume fractions. Soft Matter, 2012, 8, 21-30.	1.2	181
24	Gelation in Model Colloidâ^'Polymer Mixtures. Langmuir, 2003, 19, 4493-4503.	1.6	176
25	Crystallization of Hard-Sphere Glasses. Physical Review Letters, 2009, 103, 135704.	2.9	174
26	Shear Banding and Flow-Concentration Coupling in Colloidal Glasses. Physical Review Letters, 2010, 105, 268301.	2.9	170
27	Mesoscopic structure formation in colloidal aggregation and gelation. Advances in Colloid and Interface Science, 1997, 73, 71-126.	7.0	168
28	Differential Dynamic Microscopy of Bacterial Motility. Physical Review Letters, 2011, 106, 018101.	2.9	165
29	Yielding of colloidal glasses. Europhysics Letters, 2006, 75, 624-630.	0.7	163
30	Colloidal glasses and gels: The interplay of bonding and caging. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15203-15208.	3. 3	150
31	A Self-Quenched Defect Glass in a Colloid-Nematic Liquid Crystal Composite. Science, 2011, 334, 79-83.	6.0	139
32	Flagellated bacterial motility in polymer solutions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17771-17776.	3.3	139
33	Direct observation of oscillatory-shear-induced order in colloidal suspensions. Physical Review E, 1998, 57, 6859-6864.	0.8	130
34	Cluster Mode-Coupling Approach to Weak Gelation in Attractive Colloids. Physical Review Letters, 2004, 92, 148302.	2.9	130
35	Cellular solid behaviour of liquid crystal colloids 1. Phase separation and morphology. European Physical Journal E, 2001, 4, 11-20.	0.7	122
36	Delayed sedimentation of transient gels in colloid–polymer mixtures: dark-field observation, rheology and dynamic light scattering studies. Faraday Discussions, 1999, 112, 143-154.	1.6	121

#	Article	IF	Citations
37	A growing bacterial colony in two dimensions as an active nematic. Nature Communications, 2018, 9, 4190.	5.8	120
38	Differential Dynamic Microscopy: A High-Throughput Method for Characterizing the Motility of Microorganisms. Biophysical Journal, 2012, 103, 1637-1647.	0.2	116
39	Painting with light-powered bacteria. Nature Communications, 2018, 9, 768.	5. 8	116
40	Quantitative imaging of colloidal flows. Advances in Colloid and Interface Science, 2009, 146, 1-17.	7.0	114
41	Dynamics of colloid-polymer mixtures. Physica A: Statistical Mechanics and Its Applications, 1993, 201, 322-331.	1.2	105
42	Wall slip and flow of concentrated hard-sphere colloidal suspensions. Journal of Rheology, 2012, 56, 1005-1037.	1.3	100
43	Enhanced diffusion of nonswimmers in a three-dimensional bath of motile bacteria. Physical Review E, 2013, 88, 041002.	0.8	100
44	Escherichia coli as a model active colloid: A practical introduction. Colloids and Surfaces B: Biointerfaces, 2016, 137, 2-16.	2.5	99
45	Crystallization of globular proteins. Physical Review E, 1997, 55, 3762-3764.	0.8	98
46	Concentration dependence of the low-shear viscosity of suspensions of hard-sphere colloids. Physical Review E, 1997, 55, 5718-5722.	0.8	97
47	Tuning colloidal gels by shear. Soft Matter, 2015, 11, 4640-4648.	1.2	97
48	Swimming in a crystal. Soft Matter, 2016, 12, 131-140.	1.2	97
49	Protein crystallization in vivo. Current Opinion in Colloid and Interface Science, 2006, 11, 40-46.	3.4	95
50	lonic screening and dissociation are crucial for understanding chemical self-propulsion in polar solvents. Soft Matter, 2017, 13, 1200-1222.	1,2	95
51	Shear Zones and Wall Slip in the Capillary Flow of Concentrated Colloidal Suspensions. Physical Review Letters, 2007, 98, 198305.	2.9	94
52	Small-world rheology: an introduction to probe-based active microrheology. Physical Chemistry Chemical Physics, 2011, 13, 10617.	1.3	94
53	Slip and Flow of Hard-Sphere Colloidal Glasses. Physical Review Letters, 2008, 101, 258301.	2.9	91
54	A scattering study of nucleation phenomena in polymer crystallisation. Faraday Discussions, 1999, 112, 13-29.	1.6	88

#	Article	IF	CITATIONS
55	Passive and Active Microrheology of Hard-sphere Colloids. Journal of Physical Chemistry B, 2009, 113, 3806-3812.	1.2	88
56	Unsteady flow and particle migration in dense, non-Brownian suspensions. Journal of Rheology, 2016, 60, 905-916.	1.3	87
57	Hydration of methanol in aqueous solutions: a Raman spectroscopic study. Journal of Physics Condensed Matter, 2000, 12, L323-L328.	0.7	84
58	Clusters and gels in systems of sticky particles. Journal of Physics Condensed Matter, 2004, 16, S4913-S4922.	0.7	83
59	Spinodal Decomposition in a Model Colloid-Polymer Mixture in Microgravity. Physical Review Letters, 2007, 99, 205701.	2.9	81
60	Phase Behaviour of Hard-Sphere Mixtures. Europhysics Letters, 1994, 28, 513-518.	0.7	80
61	Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities. Scientific Reports, 2015, 5, 11884.	1.6	78
62	Non-equilibrium behaviour of colloid-polymer mixtures. Physica A: Statistical Mechanics and Its Applications, 1997, 235, 110-119.	1.2	77
63	Migration of Chemotactic Bacteria in Soft Agar: Role of Gel Concentration. Biophysical Journal, 2011, 101, 525-534.	0.2	76
64	Differential Dynamic Microscopy for Anisotropic Colloidal Dynamics. Langmuir, 2012, 28, 4618-4624.	1.6	74
65	Phase separation, aggregation and gelation in colloid-polymer mixtures and related systems. Current Opinion in Colloid and Interface Science, 1998, 3, 593-599.	3.4	73
66	Model of hyphal tip growth involving microtubule-based transport. Physical Review E, 2007, 75, 031909.	0.8	73
67	Emulsification of Partially Miscible Liquids Using Colloidal Particles:Â Nonspherical and Extended Domain Structures. Langmuir, 2007, 23, 5984-5994.	1.6	73
68	Universal Law of Fractionation for Slightly Polydisperse Systems. Physical Review Letters, 1998, 81, 1326-1329.	2.9	72
69	Aggregation by depletion attraction in cultures of bacteria producing exopolysaccharide. Journal of the Royal Society Interface, 2012, 9, 3490-3502.	1.5	72
70	Probing the Spatiotemporal Dynamics of Catalytic Janus Particles with Single-Particle Tracking and Differential Dynamic Microscopy. Physical Review Letters, 2018, 121, 078001.	2.9	72
71	Theory and simulation of gelation, arrest and yielding in attracting colloids. Journal of Physics Condensed Matter, 2004, 16, S4861-S4875.	0.7	71
72	Phase behaviour and structure of colloidal suspensions. Journal of Physics Condensed Matter, 1994, 6, A29-A36.	0.7	70

#	Article	IF	Citations
73	Fluid-solid transitions on walls in binary hard-sphere mixtures. Europhysics Letters, 1997, 40, 337-342.	0.7	70
74	Effects of Phase Behavior on the Drying of Colloidal Suspensions. Langmuir, 2002, 18, 1626-1633.	1.6	70
75	Yielding and crystallization of colloidal gels under oscillatory shear. Physical Review E, 2007, 76, 041402.	0.8	70
76	Velocity Oscillations in Microfluidic Flows of Concentrated Colloidal Suspensions. Physical Review Letters, 2009, 102, 058302.	2.9	70
77	Effect of polymer nonideality in a colloid-polymer mixture. Physical Review E, 1995, 52, 5205-5213.	0.8	65
78	Crystallization Mechanism of Hard Sphere Glasses. Physical Review Letters, 2011, 106, 215701.	2.9	65
79	Colloids in suspense. Physics World, 1996, 9, 27-34.	0.0	63
80	Collapse of transient gels in colloid-polymer mixtures. Journal of Physics Condensed Matter, 2002, 14, 2485-2505.	0.7	62
81	Filling an Emulsion Drop with Motile Bacteria. Physical Review Letters, 2014, 113, 268101.	2.9	61
82	Colloid-Polymer Mixtures at Triple Coexistence: Kinetic Maps from Free-Energy Landscapes. Physical Review Letters, 1999, 83, 1239-1242.	2.9	59
83	Structure of Marginal and Fully Developed Colloidal Liquids. Physical Review Letters, 1999, 82, 225-228.	2.9	59
84	On polydispersity and the hard sphere glass transition. Soft Matter, 2015, 11, 324-330.	1,2	59
85	Structural aging of crystals of hard-sphere colloids. Physical Review E, 2002, 66, 021408.	0.8	58
86	Role of metastable states in phase ordering dynamics. Europhysics Letters, 1997, 38, 595-600.	0.7	57
87	Non-equilibrium behavior of sticky colloidal particles: beads, clusters and gels. European Physical Journal E, 2005, 16, 77-80.	0.7	57
88	Cluster-cluster gelation with finite bond energy. Advances in Colloid and Interface Science, 1995, 62, 1-16.	7.0	56
89	Adhesion promotes phase separation in mixed-lipid membranes. Europhysics Letters, 2008, 84, 48003.	0.7	55
90	Constraint-Based Approach to Granular Dispersion Rheology. Physical Review Letters, 2018, 121, 128001.	2.9	54

#	Article	IF	Citations
91	Avalanches mediate crystallization in a hard-sphere glass. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 75-80.	3.3	52
92	Soft matter science and the COVID-19 pandemic. Soft Matter, 2020, 16, 8310-8324.	1.2	51
93	Colloidal glasses under shear strain. Physical Review E, 1998, 58, 4673-4682.	0.8	50
94	Protein crystallization: scaling of charge and salt concentration in lysozyme solutions. Journal of Physics Condensed Matter, 2000, 12, L569-L574.	0.7	48
95	Conventional optical microscopy of colloidal suspensions. Advances in Colloid and Interface Science, 2001, 92, 133-194.	7.0	48
96	Bacteria as living patchy colloids: Phenotypic heterogeneity in surface adhesion. Science Advances, 2018, 4, eaao1170.	4.7	48
97	Slip of gels in colloid–polymer mixtures under shear. Soft Matter, 2013, 9, 3237.	1.2	47
98	Conching chocolate is a prototypical transition from frictionally jammed solid to flowable suspension with maximal solid content. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10303-10308.	3.3	47
99	Direct measurement of stacking disorder in hard-sphere colloidal crystals. Physica A: Statistical Mechanics and Its Applications, 1997, 235, 216-223.	1.2	45
100	Protein phase behavior and crystallization: Effect of glycerol. Journal of Chemical Physics, 2007, 127, 125102.	1.2	45
101	Structure and characteristic length scales in clusterâ€"cluster aggregation simulation. Physica A: Statistical Mechanics and Its Applications, 1995, 217, 231-260.	1.2	44
102	Phase transition kinetics in colloid-polymer mixtures at triple coexistence: Kinetic maps from free-energy landscapes. Physical Review E, 2001, 64, 031402.	0.8	43
103	Gravitational collapse of depletion-induced colloidal gels. Soft Matter, 2016, 12, 4300-4308.	1.2	43
104	Polymer-induced phase separation in suspensions of bacteria. Europhysics Letters, 2010, 89, 68003.	0.7	42
105	A combined rheometry and imaging study of viscosity reduction in bacterial suspensions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2326-2331.	3.3	42
106	When immiscible becomes miscible—Methane in water at high pressures. Science Advances, 2017, 3, e1700240.	4.7	39
107	Optical tweezer micromanipulation of filamentous fungi. Fungal Genetics and Biology, 2007, 44, 1-13.	0.9	38
108	Microrheology and the fluctuation theorem in dense colloids. Europhysics Letters, 2011, 93, 58007.	0.7	37

#	Article	IF	CITATIONS
109	Compression mechanisms in quasimolecularXI3â€,(X=As,Sb,Bi)solids. Physical Review B, 1998, 58, 14812-14822.	1.1	36
110	Mixtures of Colloids and Wormlike Micelles:Â Phase Behavior and Kinetics. Langmuir, 2002, 18, 4248-4257.	1.6	36
111	Phase diagram for a mixture of colloids and polymers with equal size. Europhysics Letters, 2008, 82, 68002.	0.7	36
112	DNA bending by M.EcoKI methyltransferase is coupled to nucleotide flipping. Nucleic Acids Research, 2005, 33, 3235-3244.	6.5	35
113	Stuffed onions: Particles in multilamellar vesicles. Europhysics Letters, 1997, 38, 625-630.	0.7	34
114	Colloidal Glasses. MRS Bulletin, 2004, 29, 96-99.	1.7	32
115	Testing the Wyart–Cates model for non-Brownian shear thickening using bidisperse suspensions. Soft Matter, 2020, 16, 229-237.	1.2	32
116	Formation of Self-Supporting Reversible Cellular Networks in Suspensions of Colloids and Liquid Crystals. Langmuir, 2005, 21, 4921-4930.	1.6	31
117	Hook length of the bacterial flagellum is optimized for maximal stability of the flagellar bundle. PLoS Biology, 2018, 16, e2006989.	2.6	31
118	Structure and arrangement of clusters in cluster aggregation. Physical Review E, 1997, 56, 1918-1933.	0.8	30
119	A finite-cluster phase in λ-DNA-coated colloids. Soft Matter, 2007, 3, 703-706.	1.2	30
120	Polymer-induced phase separation in Escherichia coli suspensions. Soft Matter, 2010, 6, 4540.	1.2	30
121	Transient dynamics during stress overshoots in binary colloidal glasses. Soft Matter, 2014, 10, 6546-6555.	1.2	30
122	Osmotaxis in <i>Escherichia coli</i> through changes in motor speed. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7969-E7976.	3.3	30
123	Dynamics of concentrated colloidal suspensions. Physica A: Statistical Mechanics and Its Applications, 1997, 235, 1-8.	1.2	29
124	Switching of Swimming Modes in Magnetospirillium gryphiswaldense. Biophysical Journal, 2014, 106, 37-46.	0.2	29
125	High-pressure Raman spectroscopic study of cyclohexane C6H12 and C6D12. The Journal of Physical Chemistry, 1992, 96, 8168-8173.	2.9	28
126	Shear-induced yielding and ordering in concentrated particle suspensions. Physica A: Statistical Mechanics and Its Applications, 2002, 306, 334-342.	1.2	28

#	Article	IF	CITATIONS
127	What Is the †Minimum Inhibitory Concentration†(MIC) of Pexiganan Acting on Escherichia coli?†A Cautionary Case Study. Advances in Experimental Medicine and Biology, 2016, 915, 33-48.	0.8	28
128	Dynamics-dependent density distribution in active suspensions. Nature Communications, 2019, 10, 2321.	5.8	28
129	The role of friction in the yielding of adhesive non-Brownian suspensions. Journal of Rheology, 2020, 64, 405-412.	1.3	28
130	From compact to fractal crystalline clusters in concentrated systems of monodisperse hard spheres. Soft Matter, 2012, 8, 4960.	1.2	27
131	Anisotropic dynamics and kinetic arrest of dense colloidal ellipsoids in the presence of an external field studied by differential dynamic microscopy. Science Advances, 2020, 6, eaaw9733.	4.7	27
132	Structure factors from cluster-cluster aggregation simulation at high concentration. Physica A: Statistical Mechanics and Its Applications, 1994, 208, 8-17.	1.2	26
133	Colloid-stabilized emulsions: behaviour as the interfacial tension is reduced. Journal of Physics Condensed Matter, 2005, 17, S3433-S3438.	0.7	26
134	Lipid organization and the morphology of solid-like domains in phase-separating binary lipid membranes. Journal of Physics Condensed Matter, 2006, 18, L415-L420.	0.7	26
135	Spontaneous shrinking of soft nanoparticles boosts their diffusion in confined media. Nature Communications, 2019, 10, 4294.	5.8	26
136	The excess optical birefringence and phase transition in sodium nitrate. Journal of Physics C: Solid State Physics, 1988, 21, 715-729.	1.5	25
137	Effect of salt on the phase behaviour of F68 triblock PEO/PPO/PEO copolymer. Journal of Physics Condensed Matter, 2006, 18, 4461-4470.	0.7	25
138	Phase behavior and crystallization kinetics of poly-12-hydroxystearic-coated polymethylmethacrylate colloids. Physical Review E, 2003, 67, 020401.	0.8	24
139	The origin of network formation in colloid–liquid crystal composites. Journal of Physics Condensed Matter, 2004, 16, L227-L233.	0.7	23
140	Experimental studies of the flow of concentrated hard sphere suspensions into a constriction. Journal of Physics: Conference Series, 2006, 40, 124-132.	0.3	23
141	Direct observation of pre-critical nuclei in a metastable hard-sphere fluid. Journal of Physics Condensed Matter, 2001, 13, L553-L558.	0.7	22
142	Classification of ordering kinetics in three-phase systems. Physical Review E, 2001, 64, 031403.	0.8	22
143	Hydrodynamics strongly affect the dynamics of colloidal gelation but not gel structure. Soft Matter, 2019, 15, 10-16.	1.2	22
144	Phase behaviour of colloid-polymer mixtures. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1994, 16, 1127-1139.	0.4	21

#	Article	IF	CITATIONS
145	Controlling protein retention on enzyme-responsive surfaces. Surface and Interface Analysis, 2006, 38, 1505-1511.	0.8	21
146	Diffusive evolution of stable and metastable phases. II. Theory of nonequilibrium behavior in colloid-polymer mixtures. Physical Review E, 1997, 56, 5748-5758.	0.8	20
147	ÂUnsticking a colloidal glass, and sticking it again. Journal of Physics Condensed Matter, 2003, 15, S269-S275.	0.7	19
148	Crystallization of a Globular Protein in Lipid Cubic Phase. Physical Review Letters, 2004, 92, 128102.	2.9	18
149	Crystallization and aging in hard-sphere glasses. Journal of Physics Condensed Matter, 2011, 23, 194117.	0.7	18
150	Network formation in colloid–liquid crystal mixtures studied by confocal microscopy. Journal of Physics Condensed Matter, 2004, 16, S1901-S1909.	0.7	17
151	Competing Timescales Lead to Oscillations in Shear-Thickening Suspensions. Physical Review Letters, 2019, 123, 038004.	2.9	17
152	Turning a yield-stress calcite suspension into a shear-thickening one by tuning inter-particle friction. Rheologica Acta, 2021, 60, 97-106.	1.1	17
153	Viscosity and structural relaxation in concentrated hard-sphere colloids. Journal of Non-Newtonian Fluid Mechanics, 1996, 67, 179-189.	1.0	16
154	Shape of Ocr, the Gene 0.3 Protein of Bacteriophage T7: Modeling Based on Light Scattering Experimentsâ€. Biochemistry, 2001, 40, 9944-9949.	1,2	16
155	Finding bridges in packings of colloidal spheres. Soft Matter, 2011, 7, 684-690.	1.2	16
156	Reactive Momentum Transfer Contributes to the Self-Propulsion of Janus Particles. Physical Review Letters, 2020, 124, 188001.	2.9	16
157	Solid-like domains in fluid membranes. Journal of Physics Condensed Matter, 2005, 17, S3341-S3346.	0.7	15
158	Polydispersity effects in colloid–polymer mixtures. Journal of Physics Condensed Matter, 2011, 23, 194116.	0.7	15
159	Does Gravity Cause Load-Bearing Bridges in Colloidal and Granular Systems?. Physical Review Letters, 2011, 107, 038302.	2.9	15
160	Glasses under high pressure: a link to colloidal science?. Journal of Physics Condensed Matter, 2006, 18, L465-L469.	0.7	14
161	Nonequilibrium Phase Transition in the Sedimentation of Reproducing Particles. Physical Review Letters, 2008, 101, 100602.	2.9	14
162	Structure and rheology of composite soft solids: Particles in lamellar phases. Physical Review E, 1999, 59, 3242-3252.	0.8	13

#	Article	IF	CITATIONS
163	Colloids as big atoms: the genesis of a paradigm. Journal of Physics A: Mathematical and Theoretical, 2016, 49, 401001.	0.7	12
164	High-throughput characterisation of bull semen motility using differential dynamic microscopy. PLoS ONE, 2019, 14, e0202720.	1.1	12
165	Resonance theory of the pressure-induced incommensurate phase in ammonium hydrogen oxalate hemihydrate. Journal of Physics Condensed Matter, 1990, 2, 10249-10257.	0.7	11
166	Quantitative Imaging of Concentrated Suspensions Under Flow. Advances in Polymer Science, 2010, , 163-202.	0.4	11
167	Segrèetal.Reply:. Physical Review Letters, 1996, 77, 585-585.	2.9	10
168	Force chains and networks: wet suspensions through dry granular eyes. Granular Matter, 2020, 22, 1.	1.1	9
169	Partial structure factors in star polymer/colloid mixtures. Applied Physics A: Materials Science and Processing, 2002, 74, s355-s357.	1.1	8
170	Self-Supporting Liquid Crystal Composite. Molecular Crystals and Liquid Crystals, 2004, 409, 59-68.	0.4	8
171	Overexpression of the singleâ€stranded DNAâ€binding protein (SSB) stabilises CAG•CTG triplet repeats in an orientation dependent manner. FEBS Letters, 2010, 584, 153-158.	1.3	8
172	Interdisciplinary reflections: The case of physics and biology. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2011, 42, 115-118.	0.8	8
173	Celebrating <i>Soft Matter</i> 's 10th Anniversary: Simplicity in complexity – towards a soft matter physics of caramel. Soft Matter, 2016, 12, 2757-2765.	1.2	8
174	Helical and oscillatory microswimmer motility statistics from differential dynamic microscopy. New Journal of Physics, 2019, 21, 063012.	1.2	8
175	Resonant alignment of microswimmer trajectories in oscillatory shear flows. Physical Review Fluids, $2016, 1, .$	1.0	8
176	Colloidal gels under shear: Strain rate effects. , 2013, , .		7
177	Dynamic optical rectification and delivery of active particles. Soft Matter, 2019, 15, 7026-7032.	1.2	7
178	Liquid Migration in Shear Thickening Suspensions Flowing through Constrictions. Physical Review Letters, 2019, 123, 128002.	2.9	7
179	Pressure-induced electron transfer in quasi-molecular solids. Europhysics Letters, 1996, 35, 689-694.	0.7	6
180	Concluding Remarks. International Journal of Sports Medicine, 1998, 19, S167-S168.	0.8	6

#	Article	IF	CITATIONS
181	Soft condensed matter: where physics meets biology*. Physics Education, 2002, 37, 25-33.	0.3	6
182	Dynamical analysis of bacteria in microscopy movies. PLoS ONE, 2019, 14, e0217823.	1.1	6
183	Probing the dynamics of turbid colloidal suspensions using differential dynamic microscopy. Soft Matter, 2022, 18, 1858-1867.	1.2	6
184	Magnetization and magnetoresistance of Co/GaAs(001) films. Journal of Magnetism and Magnetic Materials, 1992, 115, 359-365.	1.0	5
185	The rheology of confined colloidal hard disks. Journal of Chemical Physics, 2022, 156, 184902.	1.2	5
186	Inelastic neutron scattering study of hydride ligands in [(\hat{l} /42-H)2Os3(CO)10]: Evidence for a direct Hî—,H interaction. Polyhedron, 1990, 9, 2759-2761.	1.0	4
187	Spectroscopic Probe of Free Volume Changes at Freezing: Raman Scattering fromCS2in Cyclohexane. Physical Review Letters, 1999, 82, 3827-3830.	2.9	4
188	Title is missing!. Journal of Materials Science, 1999, 34, 2389-2400.	1.7	4
189	Two magnets and a ball bearing: A simple demonstration of the method of images. American Journal of Physics, 2003, 71, 943-947.	0.3	4
190	Motile bacteria in a critical fluid mixture. Physical Review E, 2018, 97, 062604.	0.8	4
191	Soft condensed matter: where physics meets biology. Physics World, 2001, 14, 33-38.	0.0	3
192	Colloids, grains and dense suspensions: under flow and under arrest. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 4989-4991.	1.6	3
193	Rheological design of thickened alcohol-based hand rubs. Rheologica Acta, 2022, 61, 571-581.	1.1	3
194	Crystallization and aging in hard-sphere glasses. Journal of Physics Condensed Matter, 2011, 23, 319501.	0.7	2
195	Soft interfacial materials: from fundamentals to formulation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150135.	1.6	2
196	A day in the life of a hard-sphere suspension. Scottish Graduate Series, 2000, , 1-8.	0.1	2
197	Order parameter coupling and dielectric anomaly in ammonium hydrogen hemihydrate. Journal of Physics Condensed Matter, 1991, 3, 1207-1210.	0.7	1
198	Dynamics of bond-diluted Ising magnets. Journal of Magnetism and Magnetic Materials, 1992, 104-107, 423-424.	1.0	1

#	Article	IF	Citations
199	Contact Experiments in Colloidâ^'Polymer Mixtures. Langmuir, 2003, 19, 2606-2611.	1.6	1
200	Condensation of hydrodynamically stretched DNA using single-molecule fluorescence imaging and optical tweezers. , 2004, , .		1
201	Three-Dimensional Dynamics of a Eukaryotic Flagellum Revealed by High-Speed Holographic Microscopy. Biophysical Journal, 2013, 104, 213a-214a.	0.2	1
202	Solid-Like Domains in Mixed Lipid Bilayers. Behavior Research Methods, 2014, , 137-154.	2.3	1
203	Diffusion, phase behavior, and gelation in a two-dimensional layer of colloids in osmotic equilibrium with a polymer reservoir. Journal of Chemical Physics, 2021, 155, 074903.	1.2	1
204	Liquids, Biopolymers, and Evolvability., 2010,, 291-299.		1
205	First things first. Physics World, 1993, 6, 23-23.	0.0	0
206	Selective membrane bonding enhances bag & cartridge performance. Filtration and Separation, 2001, 38, 16-19.	0.2	0
207	Self-supporting liquid crystal composite. , 2002, , .		0
208	Study of DNA deformation under flow using optical tweezers. , 2004, , .		0
209	Linear and nonlinear microrheology of dense colloidal suspensions. , 2006, , .		0
210	Thomas: The Apostle of Scientists. Theology and Science, 2017, 15, 203-213.	0.2	0