
Yuanda Lv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/754464/publications.pdf Version: 2024-02-01

ΥΠΑΝΟΑ Ι.Υ

#	Article	IF	CITATIONS
1	The population genetics of structural variants in grapevine domestication. Nature Plants, 2019, 5, 965-979.	9.3	229
2	Genome-Wide Characterization of <i>cis</i> -Acting DNA Targets Reveals the Transcriptional Regulatory Framework of <i>Opaque2</i> in Maize. Plant Cell, 2015, 27, 532-545.	6.6	130
3	Comparative Transcriptome Profiling of a Resistant vs. Susceptible Tomato (Solanum lycopersicum) Cultivar in Response to Infection by Tomato Yellow Leaf Curl Virus. PLoS ONE, 2013, 8, e80816.	2.5	126
4	Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (Zea mays L.). BMC Genomics, 2016, 17, 350.	2.8	107
5	OPAQUE11 Is a Central Hub of the Regulatory Network for Maize Endosperm Development and Nutrient Metabolism. Plant Cell, 2018, 30, 375-396.	6.6	103
6	Genome-wide identification of housekeeping genes in maize. Plant Molecular Biology, 2014, 86, 543-554.	3.9	68
7	Characterization of Rice Black-Streaked Dwarf Virus- and Rice Stripe Virus-Derived siRNAs in Singly and Doubly Infected Insect Vector Laodelphax striatellus. PLoS ONE, 2013, 8, e66007.	2.5	59
8	Evolutionary Genomics of Structural Variation in Asian Rice (<i>Oryza sativa</i>) Domestication. Molecular Biology and Evolution, 2020, 37, 3507-3524.	8.9	58
9	Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing. BMC Genomics, 2017, 18, 685.	2.8	47
10	Maize transposable elements contribute to long non-coding RNAs that are regulatory hubs for abiotic stress response. BMC Genomics, 2019, 20, 864.	2.8	47
11	The NINâ€like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize. Plant Journal, 2020, 102, 353-368.	5.7	41
12	Gene Body Methylation in Plants: Mechanisms, Functions, and Important Implications for Understanding Evolutionary Processes. Genome Biology and Evolution, 2022, 14, .	2.5	39
13	Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response. Plant Growth Regulation, 2018, 84, 95-105.	3.4	37
14	mInDel: a high-throughput and efficient pipeline for genome-wide InDel marker development. BMC Genomics, 2016, 17, 290.	2.8	28
15	Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 451-463.	2.3	28
16	Transcriptome Sequencing and Differential Gene Expression Analysis of Delayed Gland Morphogenesis in Gossypium australe during Seed Germination. PLoS ONE, 2013, 8, e75323.	2.5	26
17	Aberrant phenotype and transcriptome expression during fiber cell wall thickening caused by the mutation of the Im gene in immature fiber (im) mutant in Gossypium hirsutum L. BMC Genomics, 2014, 15, 94.	2.8	25
18	Mining, characterization, and exploitation of EST-derived microsatellites in Gossypium barbadense. Science Bulletin, 2010, 55, 1889-1893.	1.7	19

Yuanda Lv

#	Article	IF	CITATIONS
19	Genome-Wide Analysis of Small RNA and Novel MicroRNA Discovery during Fiber and Seed Initial Development in Gossypium hirsutum. L. PLoS ONE, 2013, 8, e69743.	2.5	17

20 Gene coexpression network analysis reveals the role of SRS genes in senescence leaf of maize (Zea) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

21	Characterization of expressed sequence tags from developing fibers of Gossypium barbadense and evaluation of insertion-deletion variation in tetraploid cultivated cotton species. BMC Genomics, 2013, 14, 170.	2.8	8
22	Identification and characterization of presence/absence variation in maize genotype Mo17. Genes and Genomics, 2015, 37, 503-515.	1.4	7
23	Identification and Characterization of Secondary Wall-Associated NAC Genes and Their Involvement in Hormonal Responses in Tobacco (Nicotiana tabacum). Frontiers in Plant Science, 2021, 12, 712254.	3.6	5
24	The Landscape of Alternative Splicing Regulating Potassium Use Efficiency in Nicotiana tabacum. Frontiers in Plant Science, 2021, 12, 774829.	3.6	5
25	Comprehensive Transcriptome Analysis Uncovers Hub Long Non-coding RNAs Regulating Potassium Use Efficiency in Nicotiana tabacum. Frontiers in Plant Science, 2022, 13, 777308.	3.6	5
26	Comprehensive Transcriptome Analysis of GS3 Near-Isogenic Lines During Panicle Development in Rice (Oryza sativa L.). Frontiers in Genetics, 2022, 13, 857143.	2.3	5
27	Principle and Strategy of DNA Fingerprint Identification of Plant Variety. Molecular Plant Breeding, 0, , .	0.0	3
28	Transcriptome Profiling of Transposon-Derived Long Non-coding RNAs Response to Hormone in Strawberry Fruit Development. Frontiers in Plant Science, 0, 13, .	3.6	3
29	Systematic Identification and Validation of Housekeeping and Tissue-Specific Genes in Allotetraploid Chenopodium quinoa. Horticulturae, 2021, 7, 235.	2.8	1
30	Gene coexpression network analysis reveals the role of genes in senescence leaf of maize (L.). Journal of Genetics, 2020, 99, .	0.7	1
31	Construction of BAC contig maps of homoeologous chromosomes A12 and D12 of Gossypium hirsutum L. acc. TM-1. Molecular Cytogenetics, 2015, 8, 55.	0.9	0