
Takeshi Tsubata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7544616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glia maturation factor-Î ³ is involved in S1P-induced marginal zone B-cell chemotaxis and optimal IgM production to type II T-independent antigen. International Immunology, 2022, 34, 35-43.	1.8	3
2	Role of inhibitory B cell coâ€receptors in B cell selfâ€tolerance to nonâ€protein antigens*. Immunological Reviews, 2022, , .	2.8	4
3	The inhibitory coreceptor CD22 restores B cell signaling by developmentally regulating <i> Cd45 ^{â^'/â^'} </i> immunodeficient B cells. Science Signaling, 2022, 15, eabf9570.	1.6	6
4	A Guillain-Barré syndrome-associated SIGLEC10 rare variant impairs its recognition of gangliosides. Journal of Autoimmunity, 2021, 116, 102571.	3.0	10
5	CEACAM1 specifically suppresses B cell receptor signaling-mediated activation. Biochemical and Biophysical Research Communications, 2021, 535, 99-105.	1.0	3
6	A CD22–Shp1 phosphatase axis controls integrin β7 display and B cell function in mucosal immunity. Nature Immunology, 2021, 22, 381-390.	7.0	19
7	A CD22‧hp1 phosphatase axis controls integrin β 7 display and B cell function in mucosal immunity. FASEB Journal, 2021, 35, .	0.2	0
8	The Protein Tyrosine Phosphatase SHP-1 (PTPN6) but Not CD45 (PTPRC) Is Essential for the Ligand-Mediated Regulation of CD22 in BCR-Ligated B Cells. Journal of Immunology, 2021, 206, 2544-2551.	0.4	9
9	Protein antigen conjugated with cholesteryl amino-pullulan nanogel shows delayed degradation in dendritic cells and augmented immunogenicity. Vaccine, 2021, 39, 7526-7526.	1.7	1
10	Distinct roles of BCNP1 in B-cell development and activation. International Immunology, 2020, 32, 17-26.	1.8	1
11	Involvement of Reactive Oxygen Species (ROS) in BCR Signaling as a Second Messenger. Advances in Experimental Medicine and Biology, 2020, 1254, 37-46.	0.8	17
12	Identification of Siglec Cis-Ligands by Proximity Labeling. Methods in Molecular Biology, 2020, 2132, 75-83.	0.4	1
13	Inhibitory B cell co-receptors and autoimmune diseases. Immunological Medicine, 2019, 42, 108-116.	1.4	15
14	MZB1 promotes the secretion of J-chain–containing dimeric IgA and is critical for the suppression of gut inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13480-13489.	3.3	50
15	The B cell novel protein 1 (BCNP1) regulates BCR signaling and B cell apoptosis. European Journal of Immunology, 2019, 49, 911-917.	1.6	3
16	CD72 is a Negative Regulator of B Cell Responses to Nuclear Lupus Self-antigens and Development of Systemic Lupus Erythematosus. Immune Network, 2019, 19, e1.	1.6	22
17	Essential Role of NADPH Oxidase–Dependent Production of Reactive Oxygen Species in Maintenance of Sustained B Cell Receptor Signaling and B Cell Proliferation. Journal of Immunology, 2019, 202, 2546-2557.	0.4	41
18	Proximity labeling of cis-ligands of CD22/Siglec-2 reveals stepwise α2,6 sialic acid-dependent and -independent interactions. Biochemical and Biophysical Research Communications, 2018, 495, 854-859.	1.0	26

Такезні Тѕивата

#	Article	IF	CITATIONS
19	Ligand Recognition Determines the Role of Inhibitory B Cell Co-receptors in the Regulation of B Cell Homeostasis and Autoimmunity. Frontiers in Immunology, 2018, 9, 2276.	2.2	28
20	Negative regulation of B cell responses and self-tolerance to RNA-related lupus self-antigen. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2018, 94, 35-44.	1.6	4
21	Kelch-like protein 14 promotes B-1a but suppresses B-1b cell development. International Immunology, 2018, 30, 311-318.	1.8	10
22	Fcµ Receptor Promotes the Survival and Activation of Marginal Zone B Cells and Protects Mice against Bacterial Sepsis. Frontiers in Immunology, 2018, 9, 160.	2.2	13
23	CD22-Binding Synthetic Sialosides Regulate B Lymphocyte Proliferation Through CD22 Ligand-Dependent and Independent Pathways, and Enhance Antibody Production in Mice. Frontiers in Immunology, 2018, 9, 820.	2.2	25
24	LAG-3 Inhibitory Receptor Expression Identifies Immunosuppressive Natural Regulatory Plasma Cells. Immunity, 2018, 49, 120-133.e9.	6.6	190
25	CD22 and CD72 are inhibitory receptors dominantly expressed in BÂlymphocytes and regulate systemic autoimmune diseases. Zeitschrift Fur Rheumatologie, 2017, 76, 10-13.	0.5	4
26	Efficient Induction of Ig Gene Hypermutation in Ex Vivo–Activated Primary B Cells. Journal of Immunology, 2017, 199, 3023-3030.	0.4	11
27	B-cell tolerance and autoimmunity. F1000Research, 2017, 6, 391.	0.8	45
28	EAF2 mediates germinal centre B-cell apoptosis to suppress excessive immune responses and prevent autoimmunity. Nature Communications, 2016, 7, 10836.	5.8	23
29	CD72 negatively regulates B lymphocyte responses to the lupus-related endogenous toll-like receptor 7 ligand Sm/RNP. Journal of Experimental Medicine, 2016, 213, 2691-2706.	4.2	42
30	FcμR Interacts and Cooperates with the B Cell Receptor To Promote B Cell Survival. Journal of Immunology, 2015, 194, 3096-3101.	0.4	25
31	The Ras GTPase-Activating Protein Rasal3 Supports Survival of Naive T Cells. PLoS ONE, 2015, 10, e0119898.	1.1	34
32	Siglecs and B Cell Regulation. , 2015, , 609-615.		0
33	LAPTM5 promotes lysosomal degradation of intracellular CD3ζ but not of cell surface CD3ζ. Immunology and Cell Biology, 2014, 92, 527-534.	1.0	21
34	Functional Evaluation of Activation-dependent Alterations in the Sialoglycan Composition of T Cells. Journal of Biological Chemistry, 2014, 289, 1564-1579.	1.6	27
35	Siglecs and B Cell Regulation. , 2014, , 1-7.		0
36	Cd72c Is a Modifier Gene that Regulates Faslpr-Induced Autoimmune Disease. Journal of Immunology, 2013, 190, 5436-5445.	0.4	37

#	Article	IF	CITATIONS
37	Constitutively CD40–Activated B Cells Regulate CD8 T Cell Inflammatory Response by IL-10 Induction. Journal of Immunology, 2013, 190, 3189-3196.	0.4	8
38	1P010 Towards the structure analysis of CD72(01A. Protein:Structure,Poster). Seibutsu Butsuri, 2013, 53, S107.	0.0	0
39	Excess CD40L does not rescue anti-DNA B cells from clonal anergy. F1000Research, 2013, 2, 218.	0.8	1
40	Excess CD40L does not rescue anti-DNA B cells from clonal anergy. F1000Research, 2013, 2, 218.	0.8	1
41	Apoptotic marginal zone deletion of anti-Sm/ribonucleoprotein B cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7811-7816.	3.3	21
42	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
43	Human CD72 splicing isoform responsible for resistance to systemic lupus erythematosus regulates serum immunoglobulin level and is localized in endoplasmic reticulum. BMC Immunology, 2012, 13, 72.	0.9	13
44	Apoptotic Volume Decrease (AVD) Is Independent of Mitochondrial Dysfunction and Initiator Caspase Activation. Cells, 2012, 1, 1156-1167.	1.8	18
45	Role of Inhibitory BCR Co-Receptors in Immunity. Infectious Disorders - Drug Targets, 2012, 12, 181-190.	0.4	50
46	Amplified B Lymphocyte CD40 Signaling Drives Regulatory B10 Cell Expansion in Mice. PLoS ONE, 2011, 6, e22464.	1.1	62
47	The use of cationic nanogels to deliver proteins to myeloma cells and primary T lymphocytes that poorly express heparan sulfate. Biomaterials, 2011, 32, 5900-5905.	5.7	23
48	CD22-Antagonists with nanomolar potency: The synergistic effect of hydrophobic groups at C-2 and C-9 of sialic acid scaffold. Bioorganic and Medicinal Chemistry, 2011, 19, 1966-1971.	1.4	37
49	High-Affinity Ligands of Siglec Receptors and their Therapeutic Potentials. Current Medicinal Chemistry, 2011, 18, 3537-3550.	1.2	34
50	Design and Synthesis of a Multivalent Heterobifunctional CD22 Ligand as a Potential Immunomodulator. Synthesis, 2011, 2011, 2968-2974.	1.2	4
51	Differential phosphorylation of functional tyrosines in CD19 modulates B″ymphocyte activation. European Journal of Immunology, 2010, 40, 1192-1204.	1.6	18
52	Augmented Antibody Response with Premature Germinal Center Regression in CD40L Transgenic Mice. Journal of Immunology, 2010, 185, 211-219.	0.4	30
53	Correction: Constitutive CD40L Expression on B Cells Prematurely Terminates Germinal Center Response and Leads to Augmented Plasma Cell Production in T Cell Areas. Journal of Immunology, 2010, 185, 2631-2631.	0.4	0
54	Constitutive CD40L Expression on B Cells Prematurely Terminates Germinal Center Response and Leads to Augmented Plasma Cell Production in T Cell Areas. Journal of Immunology, 2010, 185, 220-230.	0.4	38

#	Article	IF	CITATIONS
55	Augmented B Lymphocyte Response to Antigen in the Absence of Antigen-Induced B Lymphocyte Signaling in an IgG-Transgenic Mouse Line. PLoS ONE, 2010, 5, e8815.	1.1	9
56	Autophagy connects antigen receptor signaling to costimulatory signaling in B lymphocytes. Autophagy, 2009, 5, 108-110.	4.3	30
57	Recruitment of the cytoplasmic adaptor Grb2 to surface IgG and IgE provides antigen receptor–intrinsic costimulation to class-switched B cells. Nature Immunology, 2009, 10, 1018-1025.	7.0	144
58	Synthesis of biotinylated sialoside to probe CD22–ligand interactions. Tetrahedron Letters, 2009, 50, 4488-4491.	0.7	9
59	Potent small molecule mouse CD22-inhibitors: Exploring the interaction of the residue at C-2 of sialic acid scaffold. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5573-5575.	1.0	19
60	The Development and Function of Regulatory B Cells Expressing IL-10 (B10 Cells) Requires Antigen Receptor Diversity and TLR Signals. Journal of Immunology, 2009, 182, 7459-7472.	0.4	443
61	Centromeric interval of chromosome 4 derived from C57BL/6 mice accelerates type 1 diabetes in NOD.CD72b congenic mice. Biochemical and Biophysical Research Communications, 2009, 380, 193-197.	1.0	2
62	Ligation of tumour-produced mucins to CD22 dramatically impairs splenic marginal zone B-cells. Biochemical Journal, 2009, 417, 673-683.	1.7	18
63	Molecular components of the B-cell antigen receptor complex of the IgM class. 1990. Journal of Immunology, 2009, 183, 1505-7.	0.4	1
64	Apoptosis of marginal zone B-cells in unimmunized mice. Journal of Medical and Dental Sciences, 2009, 56, 49-54.	0.4	0
65	Design, Synthesis, and Structureâ^'Affinity Relationships of Novel Series of Sialosides as CD22-Specific Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 6665-6681.	2.9	31
66	ER stress is involved in B cell antigen receptor ligation-induced apoptosis. Biochemical and Biophysical Research Communications, 2008, 365, 143-148.	1.0	13
67	FRET-based Ca2+ measurement in B lymphocyte by flow cytometry and confocal microscopy. Biochemical and Biophysical Research Communications, 2008, 367, 377-382.	1.0	11
68	Induction of autophagy by B cell antigen receptor stimulation and its inhibition by costimulation. Biochemical and Biophysical Research Communications, 2008, 374, 274-281.	1.0	43
69	Novel Binding Site for Src Homology 2-containing Protein-tyrosine Phosphatase-1 in CD22 Activated by B Lymphocyte Stimulation with Antigen. Journal of Biological Chemistry, 2008, 283, 1653-1659.	1.6	12
70	CD22 Regulates Time Course of Both B Cell Division and Antibody Response. Journal of Immunology, 2008, 180, 907-913.	0.4	39
71	Siglec-2 Is a Key Molecule for Immune Response. , 2008, , 167-170.		1
72	Distinctive tyrosine phosphorylation pattern of CD19 during BCR and CD40 signaling. FASEB Journal, 2008, 22, 662.14.	0.2	0

#	Article	IF	CITATIONS
73	Self and Nonself Recognition by Coreceptors on B Lymphocytes: Regulation of B Lymphocytes by CD19, CD21, CD22, and CD72. , 2008, , 199-220.		Ο
74	Augmentation of Signaling through BCR Containing IgE but not That Containing IgA Due to Lack of CD22-Mediated Signal Regulation. Journal of Immunology, 2007, 178, 2901-2907.	0.4	22
75	Synthetic glycan ligand excludes CD22 from antigen receptor-containing lipid rafts. Biochemical and Biophysical Research Communications, 2007, 360, 759-764.	1.0	24
76	Interdomain A is crucial for ITAM-dependent and -independent regulation of Syk. Biochemical and Biophysical Research Communications, 2007, 364, 111-117.	1.0	9
77	The tumor suppressor p53 is not required for antigen receptor-mediated apoptosis of B lymphocytes. Signal Transduction, 2006, 6, 54-61.	0.7	0
78	B-cell abnormality and systemic lupus erythematosus. APLAR Journal of Rheumatology, 2006, 9, 372-376.	0.2	1
79	Bispecific Abs against modified protein and DNA with oxidized lipids. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6160-6165.	3.3	29
80	B cell abnormality and autoimmune disorders. Autoimmunity, 2005, 38, 331-337.	1.2	23
81	Ectopic CD40 Ligand Expression on B Cells Triggers Intestinal Inflammation. Journal of Immunology, 2004, 172, 6388-6397.	0.4	31
82	Involvement of cell cycle progression in survival signaling through CD40 in the B-lymphocyte line WEHI-231. Cell Death and Differentiation, 2004, 11, 261-269.	5.0	15
83	Molecular interactions regulate BCR signal inhibition by CD22 and CD72. Trends in Immunology, 2004, 25, 543-550.	2.9	84
84	Ectopic CD40 ligand expression on B cells trigger intestinal inflammation. Gastroenterology, 2003, 124, A35.	0.6	0
85	Critical Roles of Pten in B Cell Homeostasis and Immunoglobulin Class Switch Recombination. Journal of Experimental Medicine, 2003, 197, 657-667.	4.2	214
86	Inhibitory Coreceptors Activated by Antigens But Not by Anti-Ig Heavy Chain Antibodies Install Requirement of Costimulation Through CD40 for Survival and Proliferation of B Cells. Journal of Immunology, 2003, 171, 1835-1843.	0.4	47
87	A Distinct Signaling Pathway Used by the IgG-Containing B Cell Antigen Receptor. Science, 2002, 298, 2392-2395.	6.0	161
88	Cutting Edge: Ectopic Expression of CD40 Ligand on B Cells Induces Lupus-Like Autoimmune Disease. Journal of Immunology, 2002, 168, 9-12.	0.4	146
89	T Cell-Specific Loss of Pten Leads to Defects in Central and Peripheral Tolerance. Immunity, 2001, 14, 523-534.	6.6	524
90	Molecular Mechanisms for Apoptosis Induced by Signaling Through the B Cell Antigen Receptor. International Reviews of Immunology, 2001, 20, 791-803.	1.5	9

#	Article	IF	CITATIONS
91	SHP-1 Requires Inhibitory Co-receptors to Down-modulate B Cell Antigen Receptor-mediated Phosphorylation of Cellular Substrates. Journal of Biological Chemistry, 2001, 276, 26648-26655.	1.6	67
92	Introduction. International Reviews of Immunology, 2001, 20, 675-678.	1.5	25
93	Regulation of B-cell antigen receptor signaling by CD72. , 2001, , 123-128.		Ο
94	CD72 Negatively Regulates Signaling Through the Antigen Receptor of B Cells. Journal of Immunology, 2000, 164, 1223-1229.	0.4	105
95	Rapid B cell apoptosis induced by antigen receptor ligation does not require Fas (CD95/APO-1), the adaptor protein FADD/MORT1 or CrmA-sensitive caspases but is defective in both MRL-+/+ and MRL-lpr/lpr mice. International Immunology, 2000, 12, 517-526.	1.8	38
96	Ras Mediates Effector Pathways Responsible for Pre-B Cell Survival, Which Is Essential for the Developmental Progression to the Late Pre-B Cell Stage. Journal of Experimental Medicine, 2000, 192, 171-182.	4.2	49
97	B cell tolerance and autoimmunity. Reviews in Immunogenetics, 2000, 2, 18-25.	0.7	8
98	Apoptosis of Mature B Cells. International Reviews of Immunology, 1999, 18, 347-365.	1.5	9
99	Co-receptors on B lymphocytes. Current Opinion in Immunology, 1999, 11, 249-255.	2.4	70
100	Signaling through the antigen receptor of B lymphocytes activates a p53-independent pathway of c-Myc-induced apoptosis. Oncogene, 1999, 18, 4091-4098.	2.6	23
101	Antigen Receptor Crossâ€Linking by Antiâ€Immunoglobulin Antibodies Coupled to Cell Surface Membrane Induces Rapid Apoptosis of Normal Spleen B cells. Scandinavian Journal of Immunology, 1998, 47, 541-547.	1.3	13
102	Differential modulation of cyclin-dependent kinase inhibitor p27Kip1 by negative signaling via the antigen receptor of B cells and positive signaling via CD40. European Journal of Immunology, 1996, 26, 2425-2432.	1.6	20
103	Autoimmune disease of exocrine organs in immunodeficient alymphoplasia mice: a spontaneous model for SjĶren's syndrome. European Journal of Immunology, 1996, 26, 2742-2748.	1.6	86
104	Antigen receptor-mediated B cell death is blacked by signaling via CD72 or treatment with dextran sukfate and is defective in autoimmunity-prone mice. International Immunology, 1996, 8, 867-875.	1.8	62
105	Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. International Immunology, 1996, 8, 765-772.	1.8	1,316
106	Defects of somatic hypermutation and class switching in alymphoplasia (aly) mutant mice. International Immunology, 1996, 8, 1067-1075.	1.8	57
107	Administration of interleukin -5 or -10 activates peritoneal B-1 cells and induces autoimmune hemolytic anemia in anti-erythrocyte autoantibody-transgenic mice. European Journal of Immunology, 1995, 25, 3047-3052.	1.6	88
108	Prevention of autoimmune symptoms in autoimmune-prone mice by elimination of B-1 cells. International Immunology, 1995, 7, 877-882.	1.8	134

#	Article	IF	CITATIONS
109	Isolation of Epstein-Barr-Virus-Transformed Lymphocytes Producing IgG Class Monoclonal Antibodies Using a Magnetic Cell Separator (MACS): Preparation of Thyroid-Stimulating IgG Antibodies from Patients with Graves′ Disease. Biochemical and Biophysical Research Communications, 1995, 207, 985-993.	1.0	26
110	Molecular mechanisms for B lymphocyte selection: induction and regulation of antigen-receptor-mediated apoptosis of mature B cells in normal mice and their defect in autoimmunity-prone mice. , 1995, , 61-65.		0
111	Oral administration of lipopolysaccharides activates B-1 cells in the peritoneal cavity and lamina propria of the gut and induces autoimmune symptoms in an autoantibody transgenic mouse Journal of Experimental Medicine, 1994, 180, 111-121.	4.2	168
112	Lineage marker-negative lymphocyte precursors derived from embryonic stem cells in vitro differentiate into mature lymphocytes in vivo. International Immunology, 1994, 6, 909-916.	1.8	23
113	Antigen-receptor cross-linking induces peritoneal B-cell apoptosis in normal but not autoimmunity-prone mice. Current Biology, 1994, 4, 8-17.	1.8	67
114	B-cell apoptosis induced by antigen receptor crosslinking is blocked by a T-cell signal through CD40. Nature, 1993, 364, 645-648.	13.7	387
115	The bcl-2 gene product inhibits clonal deletion of self-reactive B lymphocytes in the periphery but not in the bone marrow Journal of Experimental Medicine, 1993, 178, 1247-1254.	4.2	117
116	Crosslinking of the cell surface immunoglobulin (μ-surrogate light chains complex) on pre-B cells induces activation of V gene rearrangements at the immunoglobulin κ locus. International Immunology, 1992, 4, 637-641.	1.8	81
117	A transgenic model of autoimmune hemolytic anemia Journal of Experimental Medicine, 1992, 175, 71-79.	4.2	230
118	Antigen-induced apoptotic death of Ly-1 B cells responsible for autoimmune disease in transgenic mice. Nature, 1992, 357, 77-80.	13.7	280
119	Molecular and cellular aspects of early B-cell development. Current Opinion in Immunology, 1991, 3, 186-192.	2.4	17
120	Cell surface expression of the short immunoglobulin μ chain (Dμ protein) in murine pre-B cells is differently regulated from that of the intact I¼ chain. European Journal of Immunology, 1991, 21, 1359-1363.	1.6	55
121	Identification of Components of the B Cell Antigen Receptor Complex. Advances in Experimental Medicine and Biology, 1991, 292, 207-214.	0.8	9
122	Molecular components of the B-cell antigen receptor complex of the IgM class. Nature, 1990, 343, 760-762.	13.7	397
123	The products of pre-B cell-specific genes (lambda 5 and VpreB) and the immunoglobulin mu chain form a complex that is transported onto the cell surface Journal of Experimental Medicine, 1990, 172, 973-976.	4.2	216
124	A case of Behcet's disease with mononeuritis multiplex due to vasculitis Japanese Journal of Clinical Immunology, 1989, 12, 135-141.	0.0	3
125	Differentiation of a Precursor Cell with the Germline Context of Immunoglobulin Gene into Immunoglobulin-Producing Cells in Vitro. Annals of the New York Academy of Sciences, 1988, 546, 1-8.	1.8	2
126	Differentiation of an interleukin 3-dependent precursor B-cell clone into immunoglobulin-producing cells in vitro Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 4473-4477.	3.3	60

#	Article	IF	CITATIONS
127	Systemic lupus erythematosus and pregnancy. Japanese Journal of Clinical Immunology, 1986, 9, 450-460.	0.0	0