Hui-Qi Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7544596/publications.pdf

Version: 2024-02-01

218677 265206 2,015 66 26 42 h-index citations g-index papers 82 82 82 2325 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Adult Stem Cell Therapy for Premature Ovarian Failure: From Bench to Bedside. Tissue Engineering - Part B: Reviews, 2022, 28, 63-78.	4.8	15
2	Extracellular matrix stiffness controls VEGF165 secretion and neuroblastoma angiogenesis via the YAP/RUNX2/SRSF1 axis. Angiogenesis, 2022, 25, 13-14.	7.2	5
3	Metal-phenolic networks modified polyurethane as periosteum for bone regeneration. Chinese Chemical Letters, 2022, 33, 1623-1626.	9.0	13
4	Techniques for increasing the yield of stem cell-derived exosomes: what factors may be involved?. Science China Life Sciences, 2022, 65, 1325-1341.	4.9	13
5	Application of antibody-conjugated small intestine submucosa to capture urine-derived stem cells for bladder repair in a rabbit model. Bioactive Materials, 2022, 14, 443-455.	15.6	7
6	Promotion of right ventricular outflow tract reconstruction using a novel cardiac patch incorporated with hypoxia-pretreated urine-derived stem cells. Bioactive Materials, 2022, 14, 206-218.	15.6	6
7	Urine-Derived Stem Cells for Regenerative Medicine: Basic Biology, Applications, and Challenges. Tissue Engineering - Part B: Reviews, 2022, 28, 978-994.	4.8	9
8	Hypotensive Anesthesia Combined with Tranexamic Acid Reduces Perioperative Blood Loss in Simultaneous Bilateral Total Hip Arthroplasty: A Retrospective Cohort Study. Orthopaedic Surgery, 2022, 14, 555-565.	1.8	3
9	Fabrication and characterization of a pro-angiogenic hydrogel derived from the human placenta. Biomaterials Science, 2022, 10, 2062-2075.	5.4	8
10	Exosomes Derived From Human Urine–Derived Stem Cells Overexpressing miR-140-5p Alleviate Knee Osteoarthritis Through Downregulation of VEGFA in a Rat Model. American Journal of Sports Medicine, 2022, 50, 1088-1105.	4.2	46
11	Human adipose-derived stem cell-loaded small intestinal submucosa as a bioactive wound dressing for the treatment of diabetic wounds in rats., 2022, 136, 212793.		8
12	Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing. Bioactive Materials, 2022, 16, 388-402.	15.6	95
13	Scarless vocal fold regeneration by urine-derived stem cells and small intestinal submucosa hydrogel composites through enhancement of M2 macrophage Polarization, neovascularization and Re-epithelialization. Smart Materials in Medicine, 2022, 3, 339-351.	6.7	5
14	Intra-articular injection of stromal vascular fraction for knee degenerative joint disease: a concise review of preclinical and clinical evidence. Science China Life Sciences, 2022, 65, 1959-1970.	4.9	4
15	The Challenges and Development Directions of Decellularized Materials. , 2021, , 489-515.		O
16	Accelerating ESD-induced gastric ulcer healing using a pH-responsive polyurethane/small intestinal submucosa hydrogel delivered by endoscopic catheter. International Journal of Energy Production and Management, 2021, 8, rbaa056.	3.7	16
17	Mesenchymal stem cell-based therapy for burn wound healing. Burns and Trauma, 2021, 9, tkab002.	4.9	28
18	Recellularization of Decellularized Whole Organ Scaffolds: Elements, Progresses, and Challenges., 2021,, 313-413.		0

#	Article	IF	CITATIONS
19	Urine-derived stem cells: applications in skin, bone and articular cartilage repair. Burns and Trauma, 2021, 9, tkab039.	4.9	12
20	Decellularized scaffold and its elicited immune response towards the host: the underlying mechanism and means of immunomodulatory modification. Biomaterials Science, 2021, 9, 4803-4820.	5.4	26
21	A comprehensive comparison between cementless and cemented fixation in the total knee arthroplasty: an updated systematic review and meta-analysis. Journal of Orthopaedic Surgery and Research, 2021, 16, 176.	2.3	20
22	Hydrogel from acellular porcine adipose tissue promotes survival of adipose tissue transplantation. Biomedical Materials (Bristol), 2021, 16, 045015.	3.3	5
23	Procyanidins-crosslinked small intestine submucosa: A bladder patch promotes smooth muscle regeneration and bladder function restoration in a rabbit model. Bioactive Materials, 2021, 6, 1827-1838.	15.6	26
24	Current therapeutic strategies for respiratory diseases using mesenchymal stem cells. MedComm, 2021, 2, 351-380.	7.2	15
25	Minimally invasive transforaminal lumbar interbody fusion versus oblique lateral interbody fusion for lumbar degenerative disease: a meta-analysis. BMC Musculoskeletal Disorders, 2021, 22, 802.	1.9	25
26	Membranous Extracellular Matrix-Based Scaffolds for Skin Wound Healing. Pharmaceutics, 2021, 13, 1796.	4.5	29
27	Stem cell-based therapy for ameliorating intrauterine adhesion and endometrium injury. Stem Cell Research and Therapy, 2021, 12, 556.	5.5	39
28	Copper promotes the migration of bone marrow mesenchymal stem cells via Rnd3â€dependent cytoskeleton remodeling. Journal of Cellular Physiology, 2020, 235, 221-231.	4.1	20
29	Identification and characterization of two morphologically distinct stem cell subpopulations from human urine samples. Science China Life Sciences, 2020, 63, 712-723.	4.9	30
30	Acetabular Anatomical Parameters in Patients With Idiopathic Osteonecrosis of the Femoral Head. Journal of Arthroplasty, 2020, 35, 331-334.	3.1	14
31	More pain and slower functional recovery when a tourniquet is used during total knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 2020, 28, 1842-1860.	4.2	36
32	Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives. Journal of Materials Chemistry B, 2020, 8, 10023-10049.	5.8	63
33	Scaffolds in Bone Tissue Engineering: Research Progress and Current Applications. , 2020, , 204-215.		8
34	Mesenchymal Stem Cells for Chronic Wound Healing: Current Status of Preclinical and Clinical Studies. Tissue Engineering - Part B: Reviews, 2020, 26, 555-570.	4.8	115
35	Hypoxic preconditioning of human urine-derived stem cell-laden small intestinal submucosa enhances wound healing potential. Stem Cell Research and Therapy, 2020, 11, 150.	5.5	39
36	Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair. Journal of Materials Chemistry B, 2019, 7, 5038-5055.	5.8	64

#	Article	lF	CITATIONS
37	Epigallocatechin-3-gallate Cross-Linked Small Intestinal Submucosa for Guided Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 5024-5035.	5.2	18
38	Characteristics of Cervical Sagittal Alignment at Different COâ€"C2 Correcting Angles in Fusion Treatment of Atlantoaxial Dislocations. World Neurosurgery, 2019, 124, e119-e124.	1.3	1
39	A Stable Large Animal Model for Dural Defect Repair with Biomaterials and Regenerative Medicine. Tissue Engineering - Part C: Methods, 2019, 25, 315-323.	2.1	2
40	Strontium Promotes the Proliferation and Osteogenic Differentiation of Human Placental Decidual Basalis- and Bone Marrow-Derived MSCs in a Dose-Dependent Manner. Stem Cells International, 2019, 2019, 1-11.	2.5	8
41	Nanostructured titanium surfaces fabricated by hydrothermal method: Influence of alkali conditions on the osteogenic performance of implants. Materials Science and Engineering C, 2019, 94, 1-10.	7.3	34
42	Hydrogel from Acellular Porcine Adipose Tissue Accelerates Wound Healing by Inducing Intradermal Adipocyte Regeneration. Journal of Investigative Dermatology, 2019, 139, 455-463.	0.7	27
43	Collagen Hydrogel Functionalized with Collagen-Targeting IFNA2b Shows Apoptotic Activity in Nude Mice with Xenografted Tumors. ACS Biomaterials Science and Engineering, 2019, 5, 272-282.	5.2	5
44	Comparison of small intestinal submucosa and polypropylene mesh for abdominal wall defect repair. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 663-682.	3.5	18
45	Organic composite-mediated surface coating of human acellular bone matrix with strontium. Materials Science and Engineering C, 2018, 84, 12-20.	7.3	22
46	A Novel Drill Navigation Template Combines Preoperative Simulation in Expansive Open-Door Laminoplasty. World Neurosurgery, 2018, 118, e758-e765.	1.3	5
47	Hydrogel derived from decellularized porcine adipose tissue as a promising biomaterial for soft tissue augmentation. Journal of Biomedical Materials Research - Part A, 2017, 105, 1756-1764.	4.0	50
48	Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering. Acta Biomaterialia, 2017, 59, 45-57.	8.3	47
49	Efficacy and safety of small intestinal submucosa in dural defect repair in a canine model. Materials Science and Engineering C, 2017, 73, 267-274.	7.3	29
50	Progress in development of bioderived materials for dermal wound healing. International Journal of Energy Production and Management, 2017, 4, 325-334.	3.7	42
51	Biomechanical Analysis of Bilateral Facet Joint Stabilization Using Bioderived Tendon for Posterior Cervical Spine Motion Reservation in Goats. World Neurosurgery, 2017, 107, 268-275.	1.3	3
52	Altered gene expression profile in a rat model of gentamicin-induced ototoxicity and nephrotoxicity, and the potential role of upregulated Ifi44 expression. Molecular Medicine Reports, 2017, 16, 4650-4658.	2.4	8
53	Mesenchymal Stem/Progenitor Cells Derived from Articular Cartilage, Synovial Membrane and Synovial Fluid for Cartilage Regeneration: Current Status and Future Perspectives. Stem Cell Reviews and Reports, 2017, 13, 575-586.	5.6	61
54	Accelerating effects of genipin-crosslinked small intestinal submucosa for defected gastric mucosa repair. Journal of Materials Chemistry B, 2017, 5, 7059-7071.	5.8	27

#	Article	IF	CITATION
55	Celecoxib and octreotide synergistically ameliorate portal hypertension via inhibition of angiogenesis in cirrhotic rats. Angiogenesis, 2016, 19, 501-511.	7.2	41
56	Tissue-engineered ribs for chest wall reconstruction: a case with 12-year follow-up. Regenerative Medicine, 2014, 9, 431-436.	1.7	11
57	Tissue engineered esophagus by copper—small intestinal submucosa graft for esophageal repair in a canine model. Science China Life Sciences, 2014, 57, 248-255.	4.9	25
58	Tissue engineered esophagus scaffold constructed with porcine small intestinal submucosa and synthetic polymers. Biomedical Materials (Bristol), 2014, 9, 015012.	3.3	40
59	Tissue engineered esophagus by mesenchymal stem cell seeding for esophageal repair in a canine model. Journal of Surgical Research, 2013, 182, 40-48.	1.6	64
60	Copper stimulates growth of human umbilical vein endothelial cells in a vascular endothelial growth factor-independent pathway. Experimental Biology and Medicine, 2012, 237, 77-82.	2.4	61
61	Placenta―versus boneâ€marrowâ€derived mesenchymal cells for the repair of segmental bone defects in a rabbit model. FEBS Journal, 2012, 279, 2455-2465.	4.7	28
62	A multi-step method for preparation of porcine small intestinal submucosa (SIS). Biomaterials, 2011, 32, 706-713.	11.4	121
63	Role of Copper in Angiogenesis and Its Medicinal Implications. Current Medicinal Chemistry, 2009, 16, 1304-1314.	2.4	156
64	Isolation of Mesenchymal Stem Cells from Human Placental Decidua Basalis and Resistance to Hypoxia and Serum Deprivation. Stem Cell Reviews and Reports, 2009, 5, 247-255.	5.6	78
65	Grafts of Porcine Small Intestinal Submucosa with Cultured Autologous Oral Mucosal Epithelial Cells for Esophageal Repair in a Canine Model. Experimental Biology and Medicine, 2009, 234, 453-461.	2.4	66
66	The performance of a bone-derived scaffold material in the repair of critical bone defects in a rhesus	11.4	42