
Terrence R Stanford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7544367/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association Cortex Is Essential to Reverse Hemianopia by Multisensory Training. Cerebral Cortex, 2021, 31, 5015-5023.	2.9	2
2	Working Memory and Prefrontal Neural Activity of Macaques in Early Adolescence. Journal of Vision, 2021, 21, 2913.	0.3	0
3	Urgent Decision Making: Resolving Visuomotor Interactions at High Temporal Resolution. Annual Review of Vision Science, 2021, 7, 323-348.	4.4	8
4	Under time pressure, the exogenous modulation of saccade plans is ubiquitous, intricate, and lawful. Current Opinion in Neurobiology, 2021, 70, 154-162.	4.2	8
5	Multisensory Integration and the Society for Neuroscience: Then and Now. Journal of Neuroscience, 2020, 40, 3-11.	3.6	38
6	All-or-None Context Dependence Delineates Limits of FEF Visual Target Selection. Current Biology, 2019, 29, 294-305.e3.	3.9	9
7	Voluntary and involuntary contributions to perceptually guided saccadic choices resolved with millisecond precision. ELife, 2019, 8, .	6.0	17
8	Saccadic inhibition interrupts ongoing oculomotor activity to enable the rapid deployment of alternate movement plans. Scientific Reports, 2018, 8, 14163.	3.3	26
9	Motor selection dynamics in FEF explain the reaction time variance of saccades to single targets. ELife, 2018, 7, .	6.0	27
10	Saccade metrics reflect decision-making dynamics during urgent choices. Nature Communications, 2018, 9, 2907.	12.8	45
11	When the simplest voluntary decisions appear patently suboptimal. Behavioral and Brain Sciences, 2018, 41, e240.	0.7	1
12	Task dependence of decision- and choice-related activity in monkey oculomotor thalamus. Journal of Neurophysiology, 2016, 115, 581-601.	1.8	9
13	Neural correlates of working memory development in adolescent primates. Nature Communications, 2016, 7, 13423.	12.8	35
14	Behavioral response inhibition and maturation of goal representation in prefrontal cortex after puberty. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3353-3358.	7.1	19
15	What does a neuron learn from multisensory experience?. Journal of Neurophysiology, 2015, 113, 883-889.	1.8	49
16	Vision: A Moving Hill for Spatial Updating on the Fly. Current Biology, 2015, 25, R115-R117.	3.9	0
17	Age-dependent changes in prefrontal intrinsic connectivity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3853-3858.	7.1	32
18	Noiseâ€rearing disrupts the maturation of multisensory integration. European Journal of Neuroscience, 2014, 39, 602-613.	2.6	36

2

TERRENCE R STANFORD

#	Article	IF	CITATIONS
19	Development of multisensory integration from the perspective of the individual neuron. Nature Reviews Neuroscience, 2014, 15, 520-535.	10.2	278
20	The impact of perceptual, cognitive and motor factors on bimanual coordination. Psychological Research, 2013, 77, 794-807.	1.7	1
21	Perceptual Modulation of Motor—But Not Visual—Responses in the Frontal Eye Field during an Urgent-Decision Task. Journal of Neuroscience, 2013, 33, 16394-16408.	3.6	58
22	The Countermanding Task Revisited: Fast Stimulus Detection Is a Key Determinant of Psychophysical Performance. Journal of Neuroscience, 2013, 33, 5668-5685.	3.6	95
23	Cross-modal covariance as a key for the maturation of multisensory integration. Multisensory Research, 2013, 26, 58.	1.1	0
24	Working memory performance and neural activity in prefrontal cortex of peripubertal monkeys. Journal of Neurophysiology, 2013, 110, 2648-2660.	1.8	29
25	Incorporating Cross-Modal Statistics in the Development and Maintenance of Multisensory Integration. Journal of Neuroscience, 2012, 32, 2287-2298.	3.6	61
26	Neural Correlates of a Decision Variable Before Learning to Perform a Match/Non-Match Task. Journal of Neuroscience, 2012, 32, 6161-6169.	3.6	31
27	Effects of cocaine rewards on neural representations of cognitive demand in nonhuman primates. Psychopharmacology, 2011, 213, 105-118.	3.1	20
28	Neural Activity in Frontal Cortical Cell Layers: Evidence for Columnar Sensorimotor Processing. Journal of Cognitive Neuroscience, 2011, 23, 1507-1521.	2.3	61
29	Alterations to multisensory and unisensory integration by stimulus competition. Journal of Neurophysiology, 2011, 106, 3091-3101.	1.8	21
30	Tracking the Temporal Evolution of a Perceptual Judgment Using a Compelled-Response Task. Journal of Neuroscience, 2011, 31, 8406-8421.	3.6	48
31	Stimulus Selectivity in Dorsal and Ventral Prefrontal Cortex after Training in Working Memory Tasks. Journal of Neuroscience, 2011, 31, 6266-6276.	3.6	111
32	Perceptual decision making in less than 30 milliseconds. Nature Neuroscience, 2010, 13, 379-385.	14.8	440
33	Semantic confusion regarding the development of multisensory integration: a practical solution. European Journal of Neuroscience, 2010, 31, 1713-1720.	2.6	107
34	Waiting is the Hardest Part: Comparison of Two Computational Strategies for Performing a Compelled-Response Task. Frontiers in Computational Neuroscience, 2010, 4, 153.	2.1	20
35	Clocking perceptual processing speed. Communicative and Integrative Biology, 2010, 3, 287-289.	1.4	0
36	Multisensory Integration in the Superior Colliculus Requires Synergy among Corticocollicular Inputs. Journal of Neuroscience, 2009, 29, 6580-6592.	3.6	58

TERRENCE R STANFORD

#	Article	IF	CITATIONS
37	Challenges in quantifying multisensory integration: alternative criteria, models, and inverse effectiveness. Experimental Brain Research, 2009, 198, 113-26.	1.5	168
38	Tectonigral projections in the primate: a pathway for preâ€attentive sensory input to midbrain dopaminergic neurons. European Journal of Neuroscience, 2009, 29, 575-587.	2.6	56
39	The neural basis of multisensory integration in the midbrain: Its organization and maturation. Hearing Research, 2009, 258, 4-15.	2.0	135
40	The relationship between visual orienting and interlimb synchrony in a patient with a superior parietal infarction: A case study. Neurocase, 2009, 15, 73-88.	0.6	3
41	Multisensory integration: current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 2008, 9, 255-266.	10.2	1,180
42	A neural network model of multisensory integration also accounts for unisensory integration in superior colliculus. Brain Research, 2008, 1242, 13-23.	2.2	43
43	Multisensory Integration Shortens Physiological Response Latencies. Journal of Neuroscience, 2007, 27, 5879-5884.	3.6	166
44	Cortex Mediates Multisensory But Not Unisensory Integration in Superior Colliculus. Journal of Neuroscience, 2007, 27, 12775-12786.	3.6	72
45	Multisensory Versus Unisensory Integration: Contrasting Modes in the Superior Colliculus. Journal of Neurophysiology, 2007, 97, 3193-3205.	1.8	96
46	Superadditivity in multisensory integration: putting the computation in context. NeuroReport, 2007, 18, 787-792.	1.2	121
47	A Model of the Neural Mechanisms Underlying Multisensory Integration in the Superior Colliculus. Perception, 2007, 36, 1431-1443.	1.2	64
48	A Bayesian model unifies multisensory spatial localization with the physiological properties of the superior colliculus. Experimental Brain Research, 2007, 180, 153-161.	1.5	57
49	On the use of superadditivity as a metric for characterizing multisensory integration in functional neuroimaging studies. Experimental Brain Research, 2005, 166, 289-297.	1.5	162
50	Evaluating the Operations Underlying Multisensory Integration in the Cat Superior Colliculus. Journal of Neuroscience, 2005, 25, 6499-6508.	3.6	245
51	Subcortical loops through the basal ganglia. Trends in Neurosciences, 2005, 28, 401-407.	8.6	394
52	Categorization in the monkey hippocampus: A possible mechanism for encoding information into memory. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3184-3189.	7.1	99
53	Contextual Modulation of Central Thalamic Delay-Period Activity: Representation of Visual and Saccadic Goals. Journal of Neurophysiology, 2004, 91, 2628-2648.	1.8	66
54	Quantitative Assessment of the Timing and Tuning of Visual-Related, Saccade-Related, and Delay Period Activity in Primate Central Thalamus. Journal of Neurophysiology, 2003, 90, 2029-2052.	1.8	72

TERRENCE R STANFORD

#	Article	IF	CITATIONS
55	Chapter 10 Nonvisual influences on visual-information processing in the superior colliculus. Progress in Brain Research, 2001, 134, 143-156.	1.4	30
56	Development of multisensory integration: Transforming sensory input into motor output. Mental Retardation and Developmental Disabilities Research Reviews, 1999, 5, 72-85.	3.6	19
57	Intracellular Recordings in Response to Monaural and Binaural Stimulation of Neurons in the Inferior Colliculus of the Cat. Journal of Neuroscience, 1997, 17, 7565-7581.	3.6	152
58	A neuronal population code for sound localization. Nature, 1997, 388, 871-874.	27.8	166
59	Combined eye-head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys. Journal of Neurophysiology, 1996, 76, 927-952.	1.8	227
60	Site and parameters of microstimulation: evidence for independent effects on the properties of saccades evoked from the primate superior colliculus. Journal of Neurophysiology, 1996, 76, 3360-3381.	1.8	202
61	Saccades to remembered target locations: an analysis of systematic and variable errors. Vision Research, 1994, 34, 79-92.	1.4	260
62	Systematic errors for saccades to remembered targets: Evidence for a dissociation between saccade metrics and activity in the superior colliculus. Vision Research, 1994, 34, 93-106.	1.4	97
63	High-frequency neurons in the inferior colliculus that are sensitive to interaural delays of amplitude-modulated tones: evidence for dual binaural influences. Journal of Neurophysiology, 1993, 70, 64-80.	1.8	63
64	A comparison of the interaural time sensitivity of neurons in the inferior colliculus and thalamus of the unanesthetized rabbit. Journal of Neuroscience, 1992, 12, 3200-3216.	3.6	53
65	Temporal coding of envelopes and their interaural delays in the inferior colliculus of the unanesthetized rabbit. Journal of Neurophysiology, 1989, 61, 257-268.	1.8	127
66	Monaural and binaural response properties of neurons in the inferior colliculus of the rabbit: effects of sodium pentobarbital. Journal of Neurophysiology, 1989, 61, 269-282.	1.8	113
67	Interaural phase-sensitive units in the inferior colliculus of the unanesthetized rabbit: effects of changing frequency. Journal of Neurophysiology, 1987, 57, 1338-1360.	1.8	139