Luana Pereira Borba-Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/754398/publications.pdf

Version: 2024-02-01

623188 580395 32 706 14 25 citations g-index h-index papers 33 33 33 854 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sporothrix spp. Biofilms Impact in the Zoonotic Transmission Route: Feline Claws Associated Biofilms, Itraconazole Tolerance, and Potential Repurposing for Miltefosine. Pathogens, 2022, 11, 206.	1.2	12
2	A novel naphthoquinone derivative shows selective antifungal activity against Sporothrix yeasts and biofilms. Brazilian Journal of Microbiology, 2022, 53, 749-758.	0.8	9
3	Anti-Sporothrix activity of ibuprofen combined with antifungal. Brazilian Journal of Microbiology, 2021, 52, 101-106.	0.8	9
4	Bioproducts from the pyrolysis of castor seed cake: Basic dye adsorption capacity of biochar and antifungal activity of the aqueous phase. Journal of Environmental Chemical Engineering, 2021, 9, 104825.	3.3	19
5	Antifungal promising agents of zinc(II) and copper(II) derivatives based on azole drug. Journal of Inorganic Biochemistry, 2021, 219, 111401.	1.5	19
6	Miltefosine Against Scedosporium and Lomentospora Species: Antifungal Activity and Its Effects on Fungal Cells. Frontiers in Cellular and Infection Microbiology, 2021, 11, 698662.	1.8	10
7	<i>In Vitro</i> and <i>In Vivo</i> Antifungal Activity of Buparvaquone against <i>Sporothrix brasiliensis</i> . Antimicrobial Agents and Chemotherapy, 2021, 65, e0069921.	1.4	10
8	Identification of Promising Antifungal Drugs against Scedosporium and Lomentospora Species after Screening of Pathogen Box Library. Journal of Fungi (Basel, Switzerland), 2021, 7, 803.	1.5	8
9	Synthesis, characterization and biological evaluation of zinc and copper azasterol complexes against <i>Sporothrix brasiliensis</i> New Journal of Chemistry, 2021, 45, 20840-20849.	1.4	2
10	Investigation of a Microemulsion Containing Clotrimazole and Itraconazole for Transdermal Delivery for the Treatment of Sporotrichosis. Journal of Pharmaceutical Sciences, 2020, 109, 1026-1034.	1.6	21
11	Synthesis and Biological Activity of Novel Zinc-Itraconazole Complexes in Protozoan Parasites and <i>Sporothrix</i> spp. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	13
12	Identification of two potential inhibitors of Sporothrix brasiliensis and Sporothrix schenckii in the Pathogen Box collection. PLoS ONE, 2020, 15, e0240658.	1.1	16
13	Activity of Metal-Azole Complexes Against Biofilms of Candida albicans and Candida glabrata. Current Pharmaceutical Design, 2020, 26, 1524-1531.	0.9	7
14	Formulation and Evaluation of a Novel Itraconazole-Clotrimazole Topical Emulgel for the Treatment of Sporotrichosis. Current Pharmaceutical Design, 2020, 26, 1566-1570.	0.9	3
15	Synthesis, Stability Studies, and Antifungal Evaluation of Substituted \hat{l}_{\pm} - and \hat{l}^2 -2,3-Dihydrofuranaphthoquinones against Sporothrix brasiliensis and Sporothrix schenckii. Molecules, 2019, 24, 930.	1.7	13
16	Efficacy of a poly-aggregated formulation of amphotericin B in treating systemic sporotrichosis caused by Sporothrix brasiliensis. Medical Mycology, 2018, 56, 288-296.	0.3	9
17	Metal–azole fungistatic drug complexes as anti- <i>Sporothrix</i> spp. agents. New Journal of Chemistry, 2018, 42, 13641-13650.	1.4	28
18	The Antifungal Activity of Naphthoquinones: An Integrative Review. Anais Da Academia Brasileira De Ciencias, 2018, 90, 1187-1214.	0.3	76

#	Article	IF	CITATIONS
19	Synthesis and Antifungal Activity of Coumarins Derivatives Against Sporothrix spp Current Topics in Medicinal Chemistry, 2018, 18, 164-171.	1.0	10
20	Melanin biosynthesis in pathogenic species of Sporothrix. Fungal Biology Reviews, 2017, 31, 50-59.	1.9	23
21	Tacrolimus Increases the Effectiveness of Itraconazole and Fluconazole against Sporothrix spp Frontiers in Microbiology, 2017, 8, 1759.	1.5	18
22	Clotrimazole is highly effective in vitro against feline Sporothrix brasiliensis isolates. Journal of Medical Microbiology, 2017, 66, 1573-1580.	0.7	11
23	Multicenter, International Study of MIC/MEC Distributions for Definition of Epidemiological Cutoff Values for Sporothrix Species Identified by Molecular Methods. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	72
24	Metalâ \in azasterol complexes: Synthesis, characterization, interaction studies with DNA and TrxR and Biological Evaluation. Journal of the Mexican Chemical Society, 2017, 61, .	0.2	5
25	Adamantylidene-substituted alkylphosphocholine TCAN26 is more active against Sporothrix schenckii than miltefosine. Memorias Do Instituto Oswaldo Cruz, 2016, 111, 523-527.	0.8	7
26	î"24-Sterol Methyltransferase Plays an Important Role in the Growth and Development of Sporothrix schenckii and Sporothrix brasiliensis. Frontiers in Microbiology, 2016, 7, 311.	1.5	18
27	Chemical Composition and Antifungal Properties of Essential Oil of <i>Origanum vulgare</i> Linnaeus (Lamiaceae) against <i>Sporothrix schenckii</i> and <i>Sporothrix brasiliensis</i> Tropical Journal of Pharmaceutical Research, 2015, 14, 1207.	0.2	15
28	Miltefosine is active against Sporothrix brasiliensis isolates with in vitro low susceptibility to amphotericin B or itraconazole. Journal of Medical Microbiology, 2015, 64, 415-422.	0.7	37
29	Amphotericin B, alone or followed by itraconazole therapy, is effective in the control of experimental disseminated sporotrichosis by Sporothrix brasiliensis. Medical Mycology, 2015, 53, 34-41.	0.3	29
30	Susceptibility of Sporothrix brasiliensis isolates to amphotericin B, azoles, and terbinafine. Medical Mycology, 2015, 53, 178-188.	0.3	88
31	Melanin in Fonsecaea pedrosoi: a trap for oxidative radicals. BMC Microbiology, 2010, 10, 80.	1.3	69
32	Identification, antifungal susceptibility and scanning electron microscopy of a keratinolytic strain of Rhodotorula mucilaginosa: a primary causative agent of onychomycosis. FEMS Immunology and Medical Microbiology, 2009, 55, 396-403.	2.7	20