Frederic Courbin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7543946/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3ïƒ tension between early- and late-Universe probes. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1420-1439.	1.6	632
2	H0LiCOW – V. New COSMOGRAIL time delays of HEÂ0435â^'1223: <i>H</i> ₀ to 3.8ÂperÂcent precision from strong lensing in a flat ΛCDM model. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4914-4930.	1.6	366
3	TWO ACCURATE TIME-DELAY DISTANCES FROM STRONG LENSING: IMPLICATIONS FOR COSMOLOGY. Astrophysical Journal, 2013, 766, 70.	1.6	286
4	H0LiCOW – IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332Âand a new measurement of the Hubble constant. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4726-4753.	1.6	262
5	H0LiCOW – I. H0 Lenses in COSMOGRAIL's Wellspring: program overview. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2590-2604.	1.6	253
6	TDCOSMO. Astronomy and Astrophysics, 2020, 643, A165.	2.1	215
7	Deconvolution with Correct Sampling. Astrophysical Journal, 1998, 494, 472-477.	1.6	178
8	COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA. Astrophysical Journal Letters, 2014, 788, L35.	3.0	164
9	H0LiCOW – IV. Lens mass model of HEÂ0435â"1223 and blind measurement of its time-delay distance for cosmology. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4895-4913.	1.6	141
10	STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408â^'5354. Monthly Notices of the Royal Astronomical Society, 2020, 494, 6072-6102.	1.6	140
11	Image analysis for cosmology: results from the GREAT10 Galaxy Challenge. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3163-3208.	1.6	128
12	A SHARP view of H0LiCOW: H0 from three time-delay gravitational lens systems with adaptive optics imaging. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1743-1773.	1.6	128
13	TDCOSMO. Astronomy and Astrophysics, 2020, 639, A101.	2.1	126
14	THE THIRD GRAVITATIONAL LENSING ACCURACY TESTING (GREAT3) CHALLENGE HANDBOOK. Astrophysical Journal, Supplement Series, 2014, 212, 5.	3.0	125
15	COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. Astronomy and Astrophysics, 2013, 556, A22.	2.1	123
16	STRONG LENS TIME DELAY CHALLENGE. II. RESULTS OF TDC1. Astrophysical Journal, 2015, 800, 11.	1.6	120
17	GREAT3 results – I. Systematic errors in shear estimation and the impact of real galaxy morphology. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2963-3007.	1.6	119
18	COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. Astronomy and Astrophysics, 2013, 553, A120.	2.1	109

#	Article	IF	CITATIONS
19	Microlensing of the broad line region in 17 lensed quasars. Astronomy and Astrophysics, 2012, 544, A62.	2.1	101
20	Microlensing variability in the gravitationally lensed quasar QSOÂ2237+0305 \$mathsf{equiv}\$ the Einstein Cross. Astronomy and Astrophysics, 2008, 490, 933-943.	2.1	101
21	FURTHER EVIDENCE THAT QUASAR X-RAY EMITTING REGIONS ARE COMPACT: X-RAY AND OPTICAL MICROLENSING IN THE LENSED QUASAR Q J0158-4325. Astrophysical Journal, 2012, 756, 52.	1.6	98
22	COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. Astronomy and Astrophysics, 2011, 536, A53.	2.1	97
23	Decay of the GRB 990123 Optical Afterglow: Implications for the Fireball Model. Science, 1999, 283, 2069-2073.	6.0	95
24	A quadruply imaged quasar with an optical Einstein ring candidate: 1RXSÂJ113155.4–123155. Astronomy and Astrophysics, 2003, 406, L43-L46.	2.1	95
25	The FIRST Bright Quasar Survey. III. The South Galactic Cap. Astrophysical Journal, Supplement Series, 2001, 135, 227-262.	3.0	94
26	An optical time-delay for the lensed BAL quasar HEÂ2149-2745. Astronomy and Astrophysics, 2002, 383, 71-81.	2.1	84
27	COSMOGRAIL: The COSmological MOnitoring of GRAvItational Lenses. Astronomy and Astrophysics, 2005, 436, 25-35.	2.1	80
28	Time delay and lens redshift for the doubly imaged BAL quasar SBS 1520+530. Astronomy and Astrophysics, 2002, 391, 481-486.	2.1	74
29	ls every strong lens model unhappy in its own way? Uniform modelling of a sample of 13 quadruply+ imaged quasars. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5649-5671.	1.6	73
30	COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. Astronomy and Astrophysics, 2018, 609, A71.	2.1	66
31	The Redshift of the Gravitationally Lensed Radio Source PKS 1830â^'211. Astrophysical Journal, 1999, 514, L57-L60.	1.6	66
32	Discovery of a bright quasar without a massive host galaxy. Nature, 2005, 437, 381-384.	13.7	63
33	H0LiCOW XII. Lens mass model of WFI2033Ââ^'Â4723Âand blind measurement of its time-delay distance and H0. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1440-1468.	1.6	61
34	Cosmic dissonance: are new physics or systematics behind a short sound horizon?. Astronomy and Astrophysics, 2020, 639, A57.	2.1	61
35	COSMOCRAIL: the COSmological MOnitoring of GRAvItational Lenses. Astronomy and Astrophysics, 2016, 585, A88.	2.1	60
36	COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. Astronomy and Astrophysics, 2006, 451, 759-766.	2.1	60

#	Article	IF	CITATIONS
37	COSMOGRAIL: the COSmological MOnitoring ofÂGRAvItational Lenses. Astronomy and Astrophysics, 2007, 465, 51-56.	2.1	54
38	On-axis spectroscopy of the host galaxies of 20 optically luminous quasars at z 0.3. Monthly Notices of the Royal Astronomical Society, 2007, 378, 83-108.	1.6	53
39	COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. Astronomy and Astrophysics, 2013, 553, A121.	2.1	53
40	A deep, narrow J-band search for protogalactic Ly emission at redshifts z 9. Monthly Notices of the Royal Astronomical Society, 2005, 357, 1348-1356.	1.6	52
41	A CONSISTENT PICTURE EMERGES: A COMPACT X-RAY CONTINUUM EMISSION REGION IN THE GRAVITATIONALLY LENSED QUASAR SDSS J0924+0219. Astrophysical Journal, 2015, 806, 258.	1.6	52
42	COSMOGRAIL. Astronomy and Astrophysics, 2020, 640, A105.	2.1	52
43	COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. Astronomy and Astrophysics, 2007, 464, 845-851.	2.1	51
44	COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. Astronomy and Astrophysics, 2013, 557, A44.	2.1	50
45	The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign – I. Overview and classification of candidates selected by two techniques. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1041-1054.	1.6	48
46	Microlensing variability in the gravitationally lensed quasar QSOÂ2237+0305 <i>≡</i> the Einstein Cross. Astronomy and Astrophysics, 2008, 480, 647-661.	2.1	48
47	Radioâ€Optical Alignment and Recent Star Formation Associated with Ionized Filaments in the Halo of NGC 5128 (Centaurus A). Astrophysical Journal, 2002, 564, 688-695.	1.6	48
48	H0LiCOW – II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435â~1223. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4838-4857.	1.6	47
49	COSMOGRAIL. Astronomy and Astrophysics, 2018, 616, A183.	2.1	47
50	A Method for Spatial Deconvolution of Spectra. Astrophysical Journal, 2000, 529, 1136-1144.	1.6	43
51	Weak lensing mass map and peak statistics in Canada–France–Hawaii Telescope Stripe 82 survey. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2534-2542.	1.6	43
52	The Hubble constant determined through an inverse distance ladder including quasar time delays and Type Ia supernovae. Astronomy and Astrophysics, 2019, 628, L7.	2.1	43
53	An optical time delay for the double gravitational lens system FBQ 0951+2635. Astronomy and Astrophysics, 2005, 431, 103-109.	2.1	43
54	High-Resolution Optical and Near-Infrared Imaging of the Quadruple Quasar RX J0911.4+0551. Astrophysical Journal, 1998, 501, L5-L10.	1.6	43

4

#	Article	IF	CITATIONS
55	H0LiCOW VIII. A weak-lensing measurement of the external convergence in the field of the lensed quasar HE 0435Ⱂ1223. Monthly Notices of the Royal Astronomical Society, 2018, 477, 5657-5669.	1.6	42
56	Discovery of the Optical Counterpart and Early Optical Observations of GRB 990712. Astrophysical Journal, 2000, 540, 74-80.	1.6	41
57	Discovery of two gravitationally lensed quasars in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1260-1265.	1.6	41
58	Cosmic Alignment toward the Radio Einstein Ring PKS 1830â^'211?. Astrophysical Journal, 2002, 575, 95-102.	1.6	40
59	DES meets Gaia: discovery of strongly lensed quasars from a multiplet search. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4345-4354.	1.6	39
60	Discovery of a Probable Physical Triple Quasar. Astrophysical Journal, 2007, 662, L1-L5.	1.6	37
61	IMAGE ANALYSIS FOR COSMOLOGY: RESULTS FROM THE GREAT10 STAR CHALLENGE. Astrophysical Journal, Supplement Series, 2013, 205, 12.	3.0	37
62	HOLISMOKES. Astronomy and Astrophysics, 2020, 644, A162.	2.1	37
63	Simultaneous Estimation of Time Delays and Quasar Structure. Astrophysical Journal, 2008, 676, 80-86.	1.6	36
64	ZEN2: a narrow <i>J</i> -band search for <i>z</i> â^¼ 9 Lyα emitting galaxies directed towards three lensing clusters. Monthly Notices of the Royal Astronomical Society, 2008, 384, 1039-1044.	1.6	34
65	The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2017/2018 follow-up campaign: discovery of 10 lensed quasars and 10 quasar pairs. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3491-3511.	1.6	34
66	Strongly lensed SNe Ia in the era of LSST: observing cadence for lens discoveries and time-delay measurements. Astronomy and Astrophysics, 2019, 631, A161.	2.1	33
67	Discovery of the Lensed Quasar System DES J0408-5354. Astrophysical Journal Letters, 2017, 838, L15.	3.0	32
68	COSMOGRAIL. Astronomy and Astrophysics, 2019, 629, A97.	2.1	31
69	TDCOSMO. Astronomy and Astrophysics, 2020, 642, A193.	2.1	30
70	Spatial decomposition of on-nucleus spectra of quasar host galaxies. Monthly Notices of the Royal Astronomical Society, 2007, 378, 23-40.	1.6	29
71	H0LiCOW. VI. Testing the fidelity of lensed quasar host galaxy reconstruction. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4634-4649.	1.6	28
72	A detection of wobbling brightest cluster galaxies within massive galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1972-1980.	1.6	27

#	Article	IF	CITATIONS
73	Accretion Disk Size Measurement and Time Delays in the Lensed Quasar WFI 2033–4723. Astrophysical Journal, 2018, 869, 106.	1.6	27
74	Cosmological Distance Indicators. Space Science Reviews, 2018, 214, 1.	3.7	26
75	The Late Afterglow and Host Galaxy of GRB 990712. Astrophysical Journal, 2000, 534, L147-L150.	1.6	25
76	Toward an Internally Consistent Astronomical Distance Scale. Space Science Reviews, 2017, 212, 1743-1785.	3.7	25
77	HOLiCOW – X. Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI 2033⠒4723. Monthly Notices of the Royal Astronomical Society, 2019, 490, 613-633.	1.6	24
78	Time delay lens modelling challenge. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1096-1123.	1.6	24
79	Image Deconvolution of the Radio Ring PKS 1830â^'211. Astrophysical Journal, 1998, 499, L119-L123.	1.6	24
80	Firedec: a two-channel finite-resolution image deconvolution algorithm. Astronomy and Astrophysics, 2016, 589, A81.	2.1	23
81	A 7Âdeg2 survey for galaxy-scale gravitational lenses with the HST imaging archiveâ~ Monthly Notices of the Royal Astronomical Society, 2014, 439, 3392-3404.	1.6	22
82	Multi-band morpho-Spectral Component Analysis Deblending Tool (MuSCADeT): Deblending colourful objects. Astronomy and Astrophysics, 2016, 589, A2.	2.1	22
83	Dark matter dynamics in Abell 3827: new data consistent with standard cold dark matter. Monthly Notices of the Royal Astronomical Society, 2018, 477, 669-677.	1.6	22
84	A Microlensing Accretion Disk Size Measurement in the Lensed Quasar WFI 2026–4536. Astrophysical Journal, 2020, 895, 125.	1.6	21
85	COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. Astronomy and Astrophysics, 2006, 450, 461-469.	2.1	19
86	COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. Proceedings of the International Astronomical Union, 2004, 2004, 297-303.	0.0	18
87	Models of the strongly lensed quasar DES J0408â^'5354. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4038-4050.	1.6	18
88	SLITRONOMY: Towards a fully wavelet-based strong lensing inversion technique. Astronomy and Astrophysics, 2021, 647, A176.	2.1	18
89	Understanding the Relations between QSOs and Their Host Galaxies from Combined <i>HST</i> Imaging and VLT Spectroscopy. Astrophysical Journal, 2008, 679, 967-983.	1.6	17
90	Faint objects in motion: the new frontier of high precision astrometry. Experimental Astronomy, 2021, 51, 845-886.	1.6	17

#	Article	IF	CITATIONS
91	Impact of the 3D source geometry on time-delay measurements of lensed type-Ia supernovae. Astronomy and Astrophysics, 2019, 621, A55.	2.1	15
92	Sparse Lens Inversion Technique (SLIT): lens and source separability from linear inversion of the source reconstruction problem. Astronomy and Astrophysics, 2019, 623, A14.	2.1	14
93	ASTErIsM: application of topometric clustering algorithms in automatic galaxy detection and classification. Monthly Notices of the Royal Astronomical Society, 2016, 463, 2939-2957.	1.6	13
94	A test for skewed distributions of dark matter, and a possible detection in galaxy cluster Abell 3827. Monthly Notices of the Royal Astronomical Society, 2017, 468, 5004-5013.	1.6	13
95	J1721+8842: a gravitationally lensed binary quasar with a proximate damped Lyman- <i>α</i> absorber. Astronomy and Astrophysics, 2022, 657, A113.	2.1	12
96	Twisted quasar light curves: implications for continuum reverberation mapping of accretion disks. Astronomy and Astrophysics, 2020, 636, A52.	2.1	11
97	H0LiCOW – XI. A weak lensing measurement of the external convergence in the field of the lensed quasar B1608+656 using <i>HST</i> and Subaru deep imaging. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1406-1419.	1.6	10
98	Measuring accretion disk sizes of lensed quasars with microlensing time delay in multi-band light curves. Astronomy and Astrophysics, 2021, 647, A115.	2.1	9
99	Exploiting flux ratio anomalies to probe warm dark matter in future large-scale surveys. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4247-4253.	1.6	8
100	Constraining quasar structure using high-frequency microlensing variations and continuum reverberation. Astronomy and Astrophysics, 2022, 659, A21.	2.1	8
101	PyCS3: A Python toolbox for time-delay measurements in lensed quasars. Journal of Open Source Software, 2020, 5, 2654.	2.0	7
102	AN EXPLORATORY SEARCH FOR <i>z</i> ≳ 6 QUASARS IN THE UKIDSS EARLY DATA RELEASE. Astronomical Journal, 2008, 136, 954-962.	1.9	6
103	Dark Matter and Gravitational Lensing1. Publications of the Astronomical Society of the Pacific, 2000, 112, 1617-1618.	1.0	1
104	The need for a multi-purpose, optical–NIR space facility after HST and JWST. Experimental Astronomy, 2021, 51, 765.	1.6	1