Maria Teresa Perez-Prado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7543763/publications.pdf

Version: 2024-02-01

126 papers 6,809 citations

57758 44 h-index 80 g-index

128 all docs

128 docs citations

times ranked

128

3681 citing authors

#	Article	IF	CITATIONS
1	Microstructural evolution in adiabatic shear localization in stainless steel. Acta Materialia, 2003, 51, 1307-1325.	7.9	421
2	Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates. Acta Materialia, 2010, 58, 2988-2998.	7.9	297
3	Five-power-law creep in single phase metals and alloys. Progress in Materials Science, 2000, 45, 1-102.	32.8	273
4	Texture evolution during large-strain hot rolling of the Mg AZ61 alloy. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 355, 68-78.	5.6	267
5	Grain refinement of Mg–Al–Zn alloys via accumulative roll bonding. Scripta Materialia, 2004, 51, 1093-1097.	5.2	253
6	Microstructural evolution during large strain hot rolling of an AM60 Mg alloy. Scripta Materialia, 2004, 50, 661-665.	5.2	194
7	Effect of grain size on slip activity in pure magnesium polycrystals. Acta Materialia, 2015, 84, 443-456.	7.9	187
8	Twinning and grain subdivision during dynamic deformation of a Mg AZ31 sheet alloy at room temperature. Acta Materialia, 2011, 59, 6949-6962.	7.9	176
9	Texture evolution during annealing of magnesium AZ31 alloy. Scripta Materialia, 2002, 46, 149-155.	5.2	171
10	Microstructural evolution in adiabatic shear bands in Ta and Ta–W alloys. Acta Materialia, 2001, 49, 2905-2917.	7.9	167
11	In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials, 2007, 28, 4343-4354.	11.4	161
12	In situ analysis of the tensile and tensile-creep deformation mechanisms in rolled AZ31. Acta Materialia, 2012, 60, 1889-1904.	7.9	149
13	Precipitation strengthening and reversed yield stress asymmetry in Mg alloys containing rare-earth elements: A quantitative study. Acta Materialia, 2017, 124, 456-467.	7.9	148
14	Deformation mechanisms responsible for the high ductility in a Mg AZ31 alloy analyzed by electron backscattered diffraction. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 1427-1438.	2.2	138
15	Texture, microstructure and mechanical properties of equiaxed ultrafine-grained Zr fabricated by accumulative roll bonding. Acta Materialia, 2008, 56, 1228-1242.	7.9	136
16	Achieving high strength in commercial Mg cast alloys through large strain rolling. Materials Letters, 2005, 59, 3299-3303.	2.6	130
17	Measuring the critical resolved shear stresses in Mg alloys by instrumented nanoindentation. Acta Materialia, 2014, 71, 283-292.	7.9	128
18	Origin of the twinning to slip transition with grain size refinement, with decreasing strain rate and with increasing temperature in magnesium. Acta Materialia, 2015, 88, 232-244.	7.9	127

#	Article	IF	CITATIONS
19	Bulk nanocrystalline ï‰-Zr by high-pressure torsion. Scripta Materialia, 2008, 58, 219-222.	5.2	125
20	First Experimental Observation of Shear Induced hcp to bcc Transformation in Pure Zr. Physical Review Letters, 2009, 102, 175504.	7.8	108
21	Accumulative roll bonding of a Mg-based AZ61 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 353-357.	5.6	106
22	Ultrafine-grain-sized zirconium by dynamic deformation. Acta Materialia, 2006, 54, 4111-4127.	7.9	102
23	Three-dimensional investigation of grain boundary–twin interactions in a Mg AZ31 alloy by electron backscatter diffraction and continuum modeling. Acta Materialia, 2013, 61, 7679-7692.	7.9	101
24	Effect of lamellar orientation on the strength and operating deformation mechanisms of fully lamellar TiAl alloys determined by micropillar compression. Acta Materialia, 2017, 123, 102-114.	7.9	100
25	Texture analysis of the transition from slip to grain boundary sliding in a discontinuously recrystallized superplastic aluminum alloy. Acta Materialia, 2001, 49, 2259-2268.	7.9	99
26	Continuum modeling of the response of a Mg alloy AZ31 rolled sheet during uniaxial deformation. International Journal of Plasticity, 2011, 27, 1739-1757.	8.8	93
27	Texture evolution during grain growth in annealed MG AZ61 alloy. Scripta Materialia, 2003, 48, 59-64.	5.2	90
28	Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling. Scripta Materialia, 2004, 50, 667-671.	5.2	83
29	Comparison of the microstructure and thermal stability of an AZ31 alloy processed by ECAP and large strain hot rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 308-311.	5.6	81
30	Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route. Scripta Materialia, 2011, 64, 69-72.	5.2	80
31	Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3496-3505.	5.6	80
32	Origin of the low precipitation hardening in magnesium alloys. Acta Materialia, 2019, 165, 164-176.	7.9	80
33	Effect of rare earth additions on the critical resolved shear stresses of magnesium alloys. Materials Letters, 2014, 128, 199-203.	2.6	78
34	Effect of solutes on strength and ductility of Mg alloys. Acta Materialia, 2019, 180, 218-230.	7.9	77
35	Superficial severe plastic deformation of 316 LVM stainless steel through grit blasting: Effects on its microstructure and subsurface mechanical properties. Surface and Coatings Technology, 2010, 205, 1830-1837.	4.8	66
36	On the relation between the microstructure and the mechanical behavior of pure Zn processed by high pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 562, 196-202.	5.6	63

#	Article	IF	Citations
37	Understanding the high temperature reversed yield asymmetry in a Mg-rare earth alloy by slip trace analysis. Acta Materialia, 2018, 145, 264-277.	7.9	57
38	Microstructure, mechanical properties and creep of magnesium alloy Elektron21 reinforced with AlN nanoparticles by ultrasound-assisted stirring. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 659, 84-92.	5.6	52
39	Microplasticity-based rationalization of the room temperature yield asymmetry in conventional polycrystalline Mg alloys. Acta Materialia, 2016, 108, 304-316.	7.9	52
40	Orientation dependency of the alpha to omega plus beta transformation in commercially pure zirconium by high-pressure torsion. Scripta Materialia, 2011, 65, 241-244.	5.2	51
41	Determination of internal stresses in cyclically deformed copper single crystals using convergent-beam electron diffraction and dislocation dipole separation measurements. Acta Materialia, 2000, 48, 4247-4254.	7.9	49
42	Deformation bands and the formation of grain boundaries in a superplastic aluminum alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 279-290.	2.2	48
43	Prominent role of basal slip during high-temperature deformation of pure Mg polycrystals. Acta Materialia, 2015, 85, 1-13.	7.9	48
44	Influence of strain rate on the twin and slip activity of a magnesium alloy containing neodymium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 583, 220-231.	5.6	44
45	Dislocation-particle interactions in magnesium alloys. Acta Materialia, 2020, 194, 190-206.	7.9	43
46	Microstructural evolution in electroplated Cu thin films. Scripta Materialia, 2002, 47, 817-823.	5.2	42
47	Dynamic restoration mechanisms in α-zirconium at elevated temperatures. Acta Materialia, 2005, 53, 581-591.	7.9	42
48	Influence of the high pressure torsion die geometry on the allotropic phase transformations in pure Zr. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3918-3928.	5.6	39
49	Origin of the reversed yield asymmetry in Mg-rare earth alloys at high temperature. Acta Materialia, 2015, 92, 265-277.	7.9	39
50	Effect of indentation size on the nucleation and propagation of tensile twinning in pure magnesium. Acta Materialia, 2015, 93, 114-128.	7.9	39
51	Effect of Nd Additions on Extrusion Texture Development and on Slip Activity in a Mg-Mn Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4819-4829.	2.2	36
52	Stabilization of metastable phases in Mg–Li alloys by high-pressure torsion. Scripta Materialia, 2013, 68, 583-586.	5.2	36
53	Effect of the grain refinement via severe plastic deformation on strength properties and deformation behavior of an Al6061 alloy at room and cryogenic temperatures. Materials Letters, 2011, 65, 2917-2919.	2.6	35
54	Slip transfer across Î ³ -TiAl lamellae in tension. Materials and Design, 2018, 146, 81-95.	7.0	34

#	Article	IF	CITATIONS
55	Relationship Between the 3D Porosity and \hat{l}^2 -Phase Distributions and the Mechanical Properties of a High Pressure Die Cast AZ91 Mg Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4391-4403.	2.2	33
56	Texture analysis of the effect of non-basal slip systems on the dynamic recrystallization of the Mg alloy AZ31. Materials Characterization, 2013, 75, 101-107.	4.4	33
57	Grain boundary sliding and crystallographic slip during superplasticity of Al–5%Ca–5%Zn as studied by texture analysis. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 244, 216-223.	5.6	32
58	High throughput analysis of solute effects on the mechanical behavior and slip activity of beta titanium alloys. Materials and Design, 2018, 137, 371-383.	7.0	31
59	Grain Refinement in a Mg AZ91 Alloy via Large Strain Hot Rolling. Materials Transactions, 2003, 44, 2625-2630.	1.2	30
60	EBSD-Assisted Slip Trace Analysis During In Situ SEM Mechanical Testing: Application to Unravel Grain Size Effects on Plasticity of Pure Mg Polycrystals. Jom, 2016, 68, 116-126.	1.9	29
61	Application of equal channel angular pressing with parallel channels for grain refinement in aluminium alloys and its effect on deformation behavior. International Journal of Material Forming, 2010, 3, 411-414.	2.0	27
62	In situanalysis of the tensile deformation mechanisms in extruded Mg–1Mn–1Nd (wt%). Philosophical Magazine, 2013, 93, 598-617.	1.6	26
63	High temperature deformation mechanisms in pure magnesium studied by nanoindentation. Scripta Materialia, 2015, 104, 9-12.	5.2	26
64	Effect of nanoscale thick lamellae on the micromechanical response of a TiAl alloy. Scripta Materialia, 2017, 139, 17-21.	5.2	26
65	Evaluating the orientation relationship of prismatic precipitates generated by detwinning in Mg alloys. Acta Materialia, 2020, 195, 263-273.	7.9	26
66	The fabrication of bulk ultrafine-grained zirconium by accumulative roll bonding. Jom, 2007, 59, 42-45.	1.9	25
67	Dislocation microstructure and internal-stress measurements by convergent-beam electron diffraction on creep-deformed Cu and Al. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 311-317.	2.2	24
68	Large-strain softening of aluminum in shear at elevated temperature. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 3145-3153.	2.2	24
69	Texture analysis of the transition from slip to grain boundary sliding in a continuously recrystallized superplastic aluminum alloy. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2003, 342, 216-230.	5.6	22
70	Gas atomization of γâ€TiAl Alloy Powder for Additive Manufacturing. Advanced Engineering Materials, 2020, 22, 1900594.	3.5	21
71	Analysis of crystallographic slip and grain boundary sliding in a Ti–45Al–2Nb–2Mn (at%)–0.8vol%TiB2 alloy by high temperature in situ mechanical testing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 276-289.	5.6	19
72	Symbiosis between grain boundary sliding and slip creep to obtain high-strain-rate superplasticity in aluminum alloys. Journal of the European Ceramic Society, 2007, 27, 3385-3390.	5.7	18

#	Article	IF	Citations
73	Effect of Stress Level on the High Temperature Deformation and Fracture Mechanisms of Ti-45Al-2Nb-2Mn-0.8Âvol. pct TiB2: An In Situ Experimental Study. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 1887-1896.	2.2	18
74	Selective laser melting of a Fe-Si-Cr-B-C-based complex-shaped amorphous soft-magnetic electric motor rotor with record dimensions. Materials and Design, 2022, 215, 110483.	7.0	18
75	Texture gradient evolution in Al-5%Ca-5%Zn sheet alloy after tensile deformation at high superplastic strain rate. Scripta Materialia, 1996, 35, 1455-1460.	5.2	17
76	Texture Stability of a Rapidly Solidified Dispersion Strengthened Al-Fe-V-Si Material. Scripta Materialia, 1998, 38, 1427-1433.	5.2	16
77	Grain boundary evolution and continuous recrystallization of a superplastic Al—Cu—Zr alloy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1999, 357, 1683-1705.	3.4	16
78	Strength ceiling smashed for light metals. Nature, 2015, 528, 486-487.	27.8	16
79	The distribution of disorientation angles in a rolled AZ31 Mg alloy. Revista De Metalurgia, 2002, 38, 353-357.	0.5	16
80	The relation between ductility at high temperature and solid solution in Mg alloys. Journal of Magnesium and Alloys, 2022, 10, 224-238.	11.9	16
81	In Situ Observations of the Deformation Behavior and Fracture Mechanisms of Ti-45Al-2Nb-2MnÂ+Â0.8ÂvolÂpct TiB2. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1198-1208.	2.2	15
82	Elevated temperature deformation of Zr to large strains. Journal of Materials Science, 2013, 48, 4492-4500.	3.7	15
83	Tuning the magnetic properties of pure hafnium by high pressure torsion. Acta Materialia, 2017, 123, 206-213.	7.9	14
84	Phase Transformations During Highâ€Pressure Torsion of Pure Zr and of a Zrâ€2.5%Nb Alloy. Advanced Engineering Materials, 2010, 12, 754-757.	3.5	13
85	Control of the Mechanical Asymmetry in an Extruded MN11 Alloy by Static Annealing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 3282-3291.	2.2	13
86	Effect of the heat treatment on the microstructure and hardness evolution of a AlSi10MgCu alloy designed for laser powder bed fusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141487.	5.6	13
87	Microstructural evolution of annealed Al–5 wt% Ca–5 wt% Zn sheet alloy. Journal of Materials Science, 1997, 32, 1313-1318.	3.7	12
88	Single crystal like thin films by selective ion-induced grain growth. Scripta Materialia, 2006, 55, 103-106.	5.2	12
89	Atomic scale interactions of basal dislocations and twin boundaries with ultrathin precipitates in magnesium alloys. Acta Materialia, 2021, 221, 117442.	7.9	12
90	Icosahedral quasicrystal enhanced nucleation in commercially pure Ni processed by selective laser melting. Scripta Materialia, 2022, 211, 114512.	5.2	12

#	Article	IF	Citations
91	Thermal stability of pure bcc Zr fabricated by high pressure torsion. Materials Letters, 2010, 64, 211-214.	2.6	11
92	Precipitation-induced transition in the mechanical behavior of 3D printed Inconel 718 bcc lattices. Scripta Materialia, 2021, 203, 114075.	5.2	10
93	Development of segregations in a Mg–Mn–Nd alloy during HPT processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140423.	5.6	9
94	Superplastic Behavior of a Fine Grained AZ61 Alloy Processed by Large Strain Hot Rolling. Materials Science Forum, 2004, 447-448, 221-226.	0.3	8
95	Effect of nanoscale \hat{l}_{\pm} precipitation on slip activity in ultrastrong beta titanium alloys. Materials Letters, 2020, 264, 127398.	2.6	8
96	Dependence of the grain boundary misorientation distribution in supral 2004 on the plane of observation. Scripta Materialia, 1999, 40, 1401-1406.	5.2	7
97	Geometric Dynamic Recrystallization in $\hat{l}\pm -Z$ irconium at Elevated Temperatures. Materials Science Forum, 2004, 467-470, 1145-1150.	0.3	7
98	High strength ultra-fine grained titanium produced via a novel SPD processing route. International Journal of Material Forming, 2010, 3, 407-410.	2.0	7
99	Effect of high pressure torsion on the microstructure evolution of a gamma Ti–45Al–2Nb–2Mn–0.8Âvol% TiB2 alloy. Journal of Materials Science, 2013, 48, 4599-4605.	3.7	7
100	Effect of solutes on the rate sensitivity in Ti-xAl-yMo-zV and Ti-xAl-yMo-zCr Î ² -Ti alloys. Scripta Materialia, 2018, 149, 129-133.	5.2	7
101	Onset of room temperature ferromagnetism by plastic deformation in three paramagnetic pure metals. Scripta Materialia, 2016, 118, 41-45.	5.2	6
102	An Al-5Fe-6Cr alloy with outstanding high temperature mechanical behavior by laser powder bed fusion. Additive Manufacturing, 2022, 55, 102828.	3.0	6
103	Lattice rotation during severe local shear in a fully hardened Al–4%Cu–0.1%Fe single crystal alloy. Scripta Materialia, 2006, 54, 915-919.	5.2	5
104	Controlling the high temperature mechanical behavior of Al alloys by precipitation and severe straining. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2017, 679, 36-47.	5.6	5
105	Internal stress measurements by convergent beam electron diffraction on creep-deformed Al single crystals. Materials Science & Description of Structural Materials: Properties, Microstructure and Processing, 2001, 319-321, 730-734.	5.6	4
106	Influence of thermomechanical processing on superplastic forming of Mg–Al alloys. Materials Science and Technology, 2007, 23, 444-450.	1.6	4
107	Influence of texture on the recrystallization mechanisms in an AZ31 Mg sheet alloy at dynamic rates. Materials Science & Department of the Armonic Processing, 2011, , .	5.6	4
108	Evolution of Texture and Microstructure of AZ31 Mg Alloy Sheet at High Strain Rates. Materials Science Forum, 0, 706-709, 1255-1260.	0.3	4

#	Article	IF	CITATIONS
109	Very strong pure titanium by field assisted hot pressing of dual phase powders. Materials Letters, 2014, 123, 75-78.	2.6	4
110	Icosahedral quasicrystal-enhanced nucleation in Al alloys fabricated by selective laser melting. Additive Manufacturing, 2021, 44, 102053.	3.0	4
111	Continuum modeling of {10á¿™2} twinning in a Mg-3%Al-1%Zn rolled sheet. Revista De Metalurgia, 2010, 46, 133-137.	0.5	4
112	Effect of Hydrostatic Pressure on the 3D Porosity Distribution and Mechanical Behavior of a High Pressure Die Cast Mg AZ91 Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4056-4069.	2.2	3
113	Laserâ€Guided Corrosion Control: A New Approach to Tailor the Degradation of Mgâ€Alloys. Small, 2021, 17, 2100924.	10.0	3
114	A quantitative microplasticity-based approach to rationalize the poor strengthening response of polycrystalline Mg alloys. Journal of Magnesium and Alloys, 2023, 11, 1656-1671.	11.9	3
115	Deformation Mechanisms of Superplastic Al–Li 8090 Alloy Examined by X-Ray Texture Measurements. Materials Transactions, JIM, 2000, 41, 1562-1568.	0.9	2
116	Bond Strength of Ultrafine Grained Zr Fabricated by Accumulative Roll Bonding. Materials Science Forum, 0, 584-586, 243-248.	0.3	2
117	Dynamic deformation of high pressure die-cast magnesium alloys. Revista De Metalurgia, 2012, 48, 351-357.	0.5	2
118	Computer Simulation of Grain Boundary Character in a Superplastic Aluminum Alloy. Materials Research Society Symposia Proceedings, 1999, 601, 3.	0.1	1
119	Texture, Grain Boundaries and Deformation of Superplastic Aluminum Alloys. Materials Science Forum, 2001, 357-359, 255-260.	0.3	1
120	Microstructural Evolution during Hot Rolling of an AZ31 Mg Alloy. Materials Science Forum, 2003, 426-432, 637-642.	0.3	1
121	Nanostructuring a Zr-Hf Alloy via Large Strain Rolling. Materials Science Forum, 2007, 539-543, 2843-2848.	0.3	1
122	Influence of thermomechanical processing on the grain size, texture and mechanical properties of Mg-Al alloys. Metallic Materials, 2012, 50, 1-23.	0.3	1
123	EBSD Study of Annealing Rolled Zirconium. Ceramic Transactions, 0, , 555-562.	0.1	1
124	Texture Evolution of Cu Thin Films during Annealing. Materials Science Forum, 2002, 408-412, 1639-1644.	0.3	0
125	On the Controversy about the Presence of Grain Boundary Sliding in Mg AZ31. Materials Science Forum, 2012, 735, 22-25.	0.3	0
126	In situ SEM Observations of the Tensile-Creep Deformation Behavior and Fracture Mechanisms of a \hat{I}^3 -TiAl Intermetallic Alloy at Low and High Stresses Materials Research Society Symposia Proceedings, 2012, 1516, 65-70.	0.1	0