
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7543099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 2011, 476, 214-219.	27.8	2,400
2	Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genetics, 2013, 45, 1353-1360.	21.4	1,213
3	Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science, 2019, 365, .	12.6	710
4	An evaluation of analysis pipelines for DNA methylation profiling using the Illumina HumanMethylation450 BeadChip platform. Epigenetics, 2013, 8, 333-346.	2.7	192
5	Combined sequence-based and genetic mapping analysis of complex traits in outbred rats. Nature Genetics, 2013, 45, 767-775.	21.4	176
6	Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nature Communications, 2018, 9, 4845.	12.8	148
7	DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis. Nature Communications, 2018, 9, 2397.	12.8	147
8	Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes. Nature Communications, 2019, 10, 3081.	12.8	97
9	Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e219.	6.0	92
10	Microglial autophagy–associated phagocytosis is essential for recovery from neuroinflammation. Science Immunology, 2020, 5, .	11.9	89
11	Functional genomics analysis of vitamin D effects on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis ‬. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1678-E1687.	7.1	81
12	Local Delivery of miR-21 Stabilizes Fibrous Caps in Vulnerable Atherosclerotic Lesions. Molecular Therapy, 2018, 26, 1040-1055.	8.2	75
13	Efficacy of vitamin D in treating multiple sclerosis-like neuroinflammation depends on developmental stage. Experimental Neurology, 2013, 249, 39-48.	4.1	66
14	BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. Journal of Experimental Medicine, 2016, 213, 1537-1553.	8.5	66
15	Fatal demyelinating disease is induced by monocyte-derived macrophages in the absence of TGF-β signaling. Nature Immunology, 2018, 19, 1-7.	14.5	62
16	ldentification of MS-specific serum miRNAs in an international multicenter study. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e491.	6.0	59
17	Small non-coding RNAs as important players, biomarkers and therapeutic targets in multiple sclerosis: A comprehensive overview. Journal of Autoimmunity, 2019, 101, 17-25.	6.5	58
18	Smoking induces DNA methylation changes in Multiple Sclerosis patients with exposure-response relationship. Scientific Reports, 2017, 7, 14589.	3.3	55

#	Article	IF	CITATIONS
19	A Role for <i>VAV1</i> in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Science Translational Medicine, 2009, 1, 10ra21.	12.4	52
20	DNA methylation mediates genotype and smoking interaction in the development of anti-citrullinated peptide antibody-positive rheumatoid arthritis. Arthritis Research and Therapy, 2017, 19, 71.	3.5	48
21	Tobacco smoking induces changes in true DNA methylation, hydroxymethylation and gene expression in bronchoalveolar lavage cells. EBioMedicine, 2019, 46, 290-304.	6.1	48
22	Human skin long noncoding RNA WAKMAR1 regulates wound healing by enhancing keratinocyte migration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9443-9452.	7.1	48
23	Combining evidence from four immune cell types identifies DNA methylation patterns that implicate functionally distinct pathways during Multiple Sclerosis progression. EBioMedicine, 2019, 43, 411-423.	6.1	45
24	An Advanced Intercross Line Resolves <i>Eae18</i> into Two Narrow Quantitative Trait Loci Syntenic to Multiple Sclerosis Candidate Loci. Journal of Immunology, 2004, 173, 1366-1373.	0.8	44
25	Next-Generation Sequencing Identifies MicroRNAs that Associate with Pathogenic Autoimmune Neuroinflammation in Rats. Journal of Immunology, 2013, 190, 4066-4075.	0.8	44
26	Impact of genetic risk loci for multiple sclerosis on expression of proximal genes in patients. Human Molecular Genetics, 2018, 27, 912-928.	2.9	41
27	The multiple sclerosis risk gene IL22RA2 contributes to a more severe murine autoimmune neuroinflammation. Genes and Immunity, 2014, 15, 457-465.	4.1	39
28	Acute treatment with valproic acid and l-thyroxine ameliorates clinical signs of experimental autoimmune encephalomyelitis and prevents brain pathology in DA rats. Neurobiology of Disease, 2014, 71, 220-233.	4.4	34
29	Genome-Wide Screen for MicroRNAs Reveals a Role for miR-203 in Melanoma Metastasis. Journal of Investigative Dermatology, 2018, 138, 882-892.	0.7	34
30	Hypermethylation of <i>MIR21</i> in CD4+ T cells from patients with relapsing-remitting multiple sclerosis associates with lower miRNA-21 levels and concomitant up-regulation of its target genes. Multiple Sclerosis Journal, 2018, 24, 1288-1300.	3.0	33
31	Gsta4 controls apoptosis of differentiating adult oligodendrocytes during homeostasis and remyelination via the mitochondria-associated Fas-Casp8-Bid-axis. Nature Communications, 2020, 11, 4071.	12.8	31
32	Epigenetic research in multiple sclerosis: progress, challenges, and opportunities. Physiological Genomics, 2017, 49, 447-461.	2.3	30
33	Congenic mapping confirms a locus on rat chromosomeÂ10 conferring strong protection against myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. Immunogenetics, 2001, 53, 410-415.	2.4	29
34	C-type lectin receptors Mcl and Mincle control development of multiple sclerosis–like neuroinflammation. Journal of Clinical Investigation, 2020, 130, 838-852.	8.2	27
35	Usability of human Infinium MethylationEPIC BeadChip for mouse DNA methylation studies. BMC Bioinformatics, 2017, 18, 486.	2.6	25
36	Resolution of a 16.8-Mb Autoimmunity-Regulating Rat Chromosome 4 Region into Multiple Encephalomyelitis Quantitative Trait Loci and Evidence for Epistasis. Journal of Immunology, 2005, 174, 918-924.	0.8	24

#	Article	IF	CITATIONS
37	Neuronal methylome reveals CREB-associated neuro-axonal impairment in multiple sclerosis. Clinical Epigenetics, 2019, 11, 86.	4.1	24
38	STATegra: Multi-Omics Data Integration – A Conceptual Scheme With a Bioinformatics Pipeline. Frontiers in Genetics, 2021, 12, 620453.	2.3	24
39	Characterization of Multiple Sclerosis candidate gene expression kinetics in rat experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2009, 210, 30-39.	2.3	22
40	Different epigenetic clocks reflect distinct pathophysiological features of multiple sclerosis. Epigenomics, 2019, 11, 1429-1439.	2.1	22
41	Genomic imprinting: A missing piece of the Multiple Sclerosis puzzle?. International Journal of Biochemistry and Cell Biology, 2015, 67, 49-57.	2.8	21
42	Epigenetic insights into multiple sclerosis disease progression. Journal of Internal Medicine, 2020, 288, 82-102.	6.0	21
43	Multiple loci comprising immune-related genes regulate experimental neuroinflammation. Genes and Immunity, 2010, 11, 21-36.	4.1	20
44	Comparison of EM-seq and PBAT methylome library methods for low-input DNA. Epigenetics, 2022, 17, 1195-1204.	2.7	19
45	Rat bone marrow-derived dendritic cells generated with GM-CSF/IL-4 or FLT3L exhibit distinct phenotypical and functional characteristics. Journal of Leukocyte Biology, 2016, 99, 437-446.	3.3	18
46	Parent-of-Origin Effects Implicate Epigenetic Regulation of Experimental Autoimmune Encephalomyelitis and Identify Imprinted Dlk1 as a Novel Risk Gene. PLoS Genetics, 2014, 10, e1004265.	3.5	16
47	Natural Polymorphisms in Tap2 Influence Negative Selection and CD4â^¶CD8 Lineage Commitment in the Rat. PLoS Genetics, 2014, 10, e1004151.	3.5	16
48	Changes in methylation within the STK32B promoter are associated with an increased risk for generalized anxiety disorder in adolescents. Journal of Psychiatric Research, 2018, 102, 44-51.	3.1	16
49	VAV1 regulates experimental autoimmune arthritis and is associated with anti-CCP negative rheumatoid arthritis. Genes and Immunity, 2017, 18, 48-56.	4.1	15
50	Small noncoding RNA profiling across cellular and biofluid compartments and their implications for multiple sclerosis immunopathology. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
51	Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients. Scientific Reports, 2019, 9, 11996.	3.3	13
52	IL-22 Binding Protein Promotes the Disease Process in Multiple Sclerosis. Journal of Immunology, 2019, 203, 888-898.	0.8	13
53	GeneSetCluster: a tool for summarizing and integrating gene-set analysis results. BMC Bioinformatics, 2020, 21, 443.	2.6	13
54	Longitudinal DNA methylation changes at MET may alter HGF/c-MET signalling in adolescents at risk for depression. Epigenetics, 2020, 15, 646-663.	2.7	12

#	Article	IF	CITATIONS
55	Methylome and transcriptome signature of bronchoalveolar cells from multiple sclerosis patients in relation to smoking. Multiple Sclerosis Journal, 2021, 27, 1014-1026.	3.0	12
56	Combining genetic mapping with genome-wide expression in experimental autoimmune encephalomyelitis highlights a gene network enriched for T cell functions and candidate genes regulating autoimmunity. Human Molecular Genetics, 2013, 22, 4952-4966.	2.9	11
57	Anti-MOG antibodies are under polygenic regulation with the most significant control coming from the C-type lectin-like gene locus. Genes and Immunity, 2013, 14, 409-419.	4.1	11
58	Combined-cross analysis of genome-wide linkage scans for experimental autoimmune encephalomyelitis in rat. Genomics, 2006, 88, 737-744.	2.9	10
59	miRâ€31 regulates energy metabolism and is suppressed in TÂcells from patients with Sjögren's syndrome. European Journal of Immunology, 2019, 49, 313-322.	2.9	10
60	DNA methylation changes in glial cells of the normal-appearing white matter in Multiple Sclerosis patients. Epigenetics, 2022, 17, 1311-1330.	2.7	10
61	MOG-induced experimental autoimmune encephalomyelitis in the rat species triggers anti-neurofascin antibody response that is genetically regulated. Journal of Neuroinflammation, 2015, 12, 194.	7.2	8
62	<scp>lL</scp> â€22 binding protein regulates murine skin inflammation. Experimental Dermatology, 2017, 26, 444-446.	2.9	7
63	Effect of Vitamin D on Experimental Autoimmune Neuroinflammation Is Dependent on Haplotypes Comprising Naturally Occurring Allelic Variants of CIITA (Mhc2ta). Frontiers in Neurology, 2020, 11, 600401.	2.4	6
64	A validated generally applicable approach using the systematic assessment of disease modules by GWAS reveals a multi-omic module strongly associated with risk factors in multiple sclerosis. BMC Genomics, 2021, 22, 631.	2.8	5
65	Translational utility of experimental autoimmune encephalomyelitis: recent developments. Journal of Inflammation Research, 2015, 8, 211.	3.5	4
66	Deep characterization of paired chromatin and transcriptomes in four immune cell types from multiple sclerosis patients. Epigenomics, 2021, 13, 1607-1618.	2.1	4
67	MicroRNAs as promising novel biomarkers and potential drug targets for inflammatory neurological diseases. Journal of the Neurological Sciences, 2015, 356, 3-4.	0.6	3
68	Epigenetics and multiple sclerosis. , 2017, , 185-213.		2
69	A Silent Exonic SNP in Kdm3a Affects Nucleic Acids Structure but Does Not Regulate Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2013, 8, e81912.	2.5	1
70	Nurture your scientific curiosity early in your research career. Nature Genetics, 2013, 45, 116-118.	21.4	0
71	Positional Gene Cloning in Experimental Populations. Methods in Molecular Biology, 2014, 1304, 3-24.	0.9	0
72	DNA Methylation in Multiple Sclerosis. RNA Technologies, 2019, , 181-214.	0.3	0