List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7542784/publications.pdf Version: 2024-02-01

LIAN LITT

#	Article	IF	CITATIONS
1	Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy and Environmental Science, 2012, 5, 6717.	15.6	1,552
2	Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nature Communications, 2016, 7, 13638.	5.8	1,521
3	Nanoporous Graphitic-C ₃ N ₄ @Carbon Metal-Free Electrocatalysts for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society, 2011, 133, 20116-20119.	6.6	958
4	Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nature Energy, 2018, 3, 600-605.	19.8	613
5	A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications, 2013, 4, .	5.8	555
6	Nitrogen doping effects on the structure of graphene. Applied Surface Science, 2011, 257, 9193-9198.	3.1	476
7	Tin Oxide with Controlled Morphology and Crystallinity by Atomic Layer Deposition onto Graphene Nanosheets for Enhanced Lithium Storage. Advanced Functional Materials, 2012, 22, 1647-1654.	7.8	384
8	Mesoporous LiFePO ₄ /C Nanocomposite Cathode Materials for High Power Lithium Ion Batteries with Superior Performance. Advanced Materials, 2010, 22, 4944-4948.	11.1	380
9	Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy and Environmental Science, 2014, 7, 768-778.	15.6	363
10	Highly stable Zn metal anodes enabled by atomic layer deposited Al ₂ O ₃ coating for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 7836-7846.	5.2	323
11	Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy, 2021, 80, 105478.	8.2	318
12	Transitionâ€Metal Phosphides: Activity Origin, Energyâ€Related Electrocatalysis Applications, and Synthetic Strategies. Advanced Functional Materials, 2020, 30, 2004009.	7.8	309
13	Ultrafine Pt Nanoparticleâ€Đecorated Pyriteâ€Type CoS ₂ Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting. Advanced Energy Materials, 2018, 8, 1800935.	10.2	286
14	Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries. Electrochemistry Communications, 2011, 13, 668-672.	2.3	261
15	Extremely Stable Platinum Nanoparticles Encapsulated in a Zirconia Nanocage by Area elective Atomic Layer Deposition for the Oxygen Reduction Reaction. Advanced Materials, 2015, 27, 277-281.	11.1	238
16	Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide nanocoatings via atomic layer deposition. Journal of Power Sources, 2014, 247, 57-69.	4.0	212
17	Highly compact TiO ₂ layer for efficient hole-blocking in perovskite solar cells. Applied Physics Express, 2014, 7, 052301.	1.1	199
18	Highly stable Li 1.2 Mn 0.54 Co 0.13 Ni 0.13 O 2 enabled by novel atomic layer deposited AlPO 4 coating. Nano Energy, 2017, 34, 120-130.	8.2	188

#	Article	IF	CITATIONS
19	Rational Design of Atomic‣ayerâ€Deposited LiFePO ₄ as a Highâ€Performance Cathode for Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 6472-6477.	11.1	161
20	High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application. Journal of Power Sources, 2012, 197, 238-245.	4.0	158
21	Safe and Durable High-Temperature Lithium–Sulfur Batteries via Molecular Layer Deposited Coating. Nano Letters, 2016, 16, 3545-3549.	4.5	157
22	Engineering interfacial layers to enable Zn metal anodes for aqueous zinc-ion batteries. Energy Storage Materials, 2021, 43, 317-336.	9.5	154
23	Facile controlled synthesis and growth mechanisms of flower-like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method. Journal of Colloid and Interface Science, 2012, 369, 123-128.	5.0	141
24	Hierarchically porous LiFePO4/nitrogen-doped carbon nanotubes composite as a cathode for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 7537.	6.7	135
25	Enhanced Performance of P2â€Na _{0.66} (Mn _{0.54} Co _{0.13} Ni _{0.13})O ₂ Cathode for Sodiumâ€Ion Batteries by Ultrathin Metal Oxide Coatings via Atomic Layer Deposition. Advanced Functional Materials, 2017, 27, 1701870	7.8	128
26	Atomic Layer Deposition of Lithium Tantalate Solid-State Electrolytes. Journal of Physical Chemistry C, 2013, 117, 20260-20267.	1.5	123
27	Elegant design of electrode and electrode/electrolyte interface in lithium-ion batteries by atomic layer deposition. Nanotechnology, 2015, 26, 024001.	1.3	123
28	Chemical Structure of Nitrogen-Doped Graphene with Single Platinum Atoms and Atomic Clusters as a Platform for the PEMFC Electrode. Journal of Physical Chemistry C, 2014, 118, 3890-3900.	1.5	121
29	Atomic scale enhancement of metal–support interactions between Pt and ZrC for highly stable electrocatalysts. Energy and Environmental Science, 2015, 8, 1450-1455.	15.6	120
30	Nanoscale Manipulation of Spinel Lithium Nickel Manganese Oxide Surface by Multisite Ti Occupation as Highâ€Performance Cathode. Advanced Materials, 2017, 29, 1703764.	11.1	119
31	Pseudocapacitive Co9S8/graphene electrode for high-rate hybrid supercapacitors. Carbon, 2019, 141, 134-142.	5.4	110
32	Atomic/molecular layer deposition for energy storage and conversion. Chemical Society Reviews, 2021, 50, 3889-3956.	18.7	109
33	Unravelling the Role of Electrochemically Active FePO ₄ Coating by Atomic Layer Deposition for Increased Highâ€Voltage Stability of LiNi _{0.5} Mn _{1.5} O ₄ Cathode Material. Advanced Science, 2015, 2, 1500022.	5.6	108
34	Structurally tailored graphene nanosheets as lithium ion battery anodes: an insight to yield exceptionally high lithium storage performance. Nanoscale, 2013, 5, 12607.	2.8	107
35	Tunable porous structure of metal organic framework derived carbon and the application in lithium–sulfur batteries. Journal of Power Sources, 2016, 302, 174-179.	4.0	100
36	Ultrathin atomic layer deposited ZrO2 coating to enhance the electrochemical performance of Li4Ti5O12 as an anode material. Electrochimica Acta, 2013, 93, 195-201.	2.6	99

#	Article	IF	CITATIONS
37	Highly Stable Na _{2/3} (Mn _{0.54} Ni _{0.13} Co _{0.13})O ₂ Cathode Modified by Atomic Layer Deposition for Sodiumâ€lon Batteries. ChemSusChem, 2015, 8, 2537-2543.	3.6	97
38	Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition. Nanotechnology, 2011, 22, 165602.	1.3	90
39	Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries. Nanotechnology, 2014, 25, 504007.	1.3	87
40	Suppressing Zn dendrite growth by molecular layer deposition to enable long-life and deeply rechargeable aqueous Zn anodes. Journal of Materials Chemistry A, 2020, 8, 22100-22110.	5.2	82
41	Atomic layer deposited coatings to significantly stabilize anodes for Li ion batteries: effects of coating thickness and the size of anode particles. Journal of Materials Chemistry A, 2014, 2, 2306.	5.2	78
42	Non-Aqueous Approach to Synthesize Amorphous/Crystalline Metal Oxide-Graphene Nanosheet Hybrid Composites. Journal of Physical Chemistry C, 2010, 114, 18330-18337.	1.5	75
43	Self-stacked nitrogen-doped carbon nanotubes as long-life air electrode for sodium-air batteries: Elucidating the evolution of discharge product morphology. Nano Energy, 2015, 12, 698-708.	8.2	75
44	Perspectives on the Active Sites and Catalyst Design for the Hydrogenation of Dimethyl Oxalate. ACS Catalysis, 2020, 10, 4465-4490.	5.5	69
45	Enabling High-Energy-Density Cathode for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 23094-23102.	4.0	67
46	Structural and interface design of hierarchical porous carbon derived from soybeans as anode materials for potassium-ion batteries. Journal of Power Sources, 2020, 463, 228172.	4.0	67
47	Size-dependent surface phase change of lithium iron phosphate during carbon coating. Nature Communications, 2014, 5, 3415.	5.8	66
48	Toward a Sodium–"Air―Battery: Revealing the Critical Role of Humidity. Journal of Physical Chemistry C, 2015, 119, 13433-13441.	1.5	66
49	Microwave-assisted hydrothermal synthesis of nanostructured spinel Li4Ti5O12 as anode materials for lithium ion batteries. Electrochimica Acta, 2012, 63, 100-104.	2.6	59
50	Atomic Layer Deposited Lithium Silicates as Solid-State Electrolytes for All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2017, 9, 31786-31793.	4.0	58
51	Superior stable sulfur cathodes of Li–S batteries enabled by molecular layer deposition. Chemical Communications, 2014, 50, 9757.	2.2	56
52	Controlled synthesis of Zirconium Oxide on graphene nanosheets by atomic layer deposition and its growth mechanism. Carbon, 2013, 52, 74-82.	5.4	55
53	Atomic layer deposited Li4Ti5O12 on nitrogen-doped carbon nanotubes. RSC Advances, 2013, 3, 7285.	1.7	54
54	High stability and activity of Pt electrocatalyst on atomic layer deposited metal oxide/nitrogen-doped graphene hybrid support. International Journal of Hydrogen Energy, 2014, 39, 15967-15974.	3.8	51

#	Article	IF	CITATIONS
55	Enhanced reversibility and electrochemical window of Zn-ion batteries with an acetonitrile/water-in-salt electrolyte. Chemical Communications, 2021, 57, 1246-1249.	2.2	50
56	Nitrogen-doped carbon nanotubes with tunable structure and high yield produced by ultrasonic spray pyrolysis. Applied Surface Science, 2011, 257, 7837-7844.	3.1	46
57	Modulating the Electronic Metalâ€Support Interactions in Singleâ€Atom Pt ₁ â^'CuO Catalyst for Boosting Acetone Oxidation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	46
58	Formation of size-dependent and conductive phase on lithium iron phosphate during carbon coating. Nature Communications, 2018, 9, 929.	5.8	45
59	Atomic layer deposition of amorphous iron phosphates on carbon nanotubes as cathode materials for lithium-ion batteries. Electrochimica Acta, 2015, 162, 275-281.	2.6	44
60	Improving LiNi0.9Co0.08Mn0.02O2's cyclic stability via abating mechanical damages. Energy Storage Materials, 2020, 28, 1-9.	9.5	44
61	Potassium-ion battery cathodes: Past, present, and prospects. Journal of Power Sources, 2021, 484, 229307.	4.0	43
62	Synthesis and characterization of phosphorus–nitrogen doped multiwalled carbon nanotubes. Carbon, 2011, 49, 5014-5021.	5.4	42
63	Benchmarking Three Ruthenium Phosphide Phases for Electrocatalysis of the Hydrogen Evolution Reaction: Experimental and Theoretical Insights. Chemistry - A European Journal, 2019, 25, 7826-7830.	1.7	42
64	Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond. Journal of Power Sources, 2018, 391, 10-25.	4.0	40
65	Eutectic Electrolytes Chemistry for Rechargeable Zn Batteries. Small, 2022, 18, e2200550.	5.2	40
66	Hierarchically porous carbon from waste coffee grounds for high-performance Li–Se batteries. Electrochimica Acta, 2019, 325, 134931.	2.6	39
67	Materials design and fundamental understanding of tellurium-based electrochemistry for rechargeable batteries. Energy Storage Materials, 2021, 40, 166-188.	9.5	39
68	Nanoscale stabilization of Li–sulfur batteries by atomic layer deposited Al2O3. RSC Advances, 2014, 4, 27126.	1.7	38
69	The roles of electrolyte chemistry in hard carbon anode for potassium-ion batteries. Chemical Engineering Journal, 2022, 427, 130972.	6.6	36
70	Lignin-derived hard carbon anode for potassium-ion batteries: Interplay among lignin molecular weight, material structures, and storage mechanisms. Chemical Engineering Journal, 2022, 427, 131547.	6.6	36
71	Crystallinity-Controlled Synthesis of Zirconium Oxide Thin Films on Nitrogen-Doped Carbon Nanotubes by Atomic Layer Deposition. Journal of Physical Chemistry C, 2012, 116, 14656-14664.	1.5	34
72	Atomic Layer Deposited Nonâ€Noble Metal Oxide Catalyst for Sodium–Air Batteries: Tuning the Morphologies and Compositions of Discharge Product. Advanced Functional Materials, 2017, 27, 1606662.	7.8	34

#	Article	IF	CITATIONS
73	Atomically precise growth of sodium titanates as anode materials for high-rate and ultralong cycle-life sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 24281-24288.	5.2	32
74	Visualizing the Oxidation Mechanism and Morphological Evolution of the Cubicâ€Shaped Superoxide Discharge Product in Na–Air Batteries. Advanced Functional Materials, 2019, 29, 1808332.	7.8	30
75	A durable lithium–tellurium battery: Effects of carbon pore structure and tellurium content. Carbon, 2021, 173, 11-21.	5.4	30
76	Pseudocapacitive Crystalline MnCo ₂ O _{4.5} and Amorphous MnCo ₂ S ₄ Core/Shell Heterostructure with Graphene for High-Performance K-Ion Hybrid Capacitors. ACS Applied Materials & Interfaces, 2020, 12, 54773-54781.	4.0	29
77	The effect of rapid solidification on the microstructure and hydrogen storage properties of V35Ti25Cr40 hydrogen storage alloy. International Journal of Hydrogen Energy, 2009, 34, 8094-8100.	3.8	28
78	Tracking the Effect of Sodium Insertion/Extraction in Amorphous and Anatase TiO ₂ Nanotubes. Journal of Physical Chemistry C, 2017, 121, 11773-11782.	1.5	28
79	Activation-free synthesis of microporous carbon from polyvinylidene fluoride as host materials for lithium-selenium batteries. Journal of Power Sources, 2019, 438, 227059.	4.0	27
80	Study on the hydrogen desorption mechanism of a Mg–V composite prepared by SPS. International Journal of Hydrogen Energy, 2012, 37, 984-989.	3.8	26
81	Atomic layer deposited aluminium phosphate thin films on N-doped CNTs. RSC Advances, 2013, 3, 4492.	1.7	26
82	Titanium Dioxide/Lithium Phosphate Nanocomposite Derived from Atomic Layer Deposition as a Highâ€Performance Anode for Lithium Ion Batteries. Advanced Materials Interfaces, 2016, 3, 1600369.	1.9	26
83	Origin of phase inhomogeneity in lithium iron phosphate during carbon coating. Nano Energy, 2018, 45, 52-60.	8.2	26
84	Intercalation-pseudocapacitance hybrid anode for high rate and energy lithium-ion capacitors. Journal of Energy Chemistry, 2021, 55, 459-467.	7.1	26
85	High-temperature treatment to engineer the single-atom Pt coordination environment towards highly efficient hydrogen evolution. Journal of Energy Chemistry, 2021, 59, 212-219.	7.1	26
86	High-performance sodium–selenium batteries enabled by microporous carbon/selenium cathode and fluoroethylene carbonate electrolyte additive. Journal of Power Sources, 2020, 453, 227855.	4.0	25
87	Improving hydrogen storage properties of Laves phase related BCC solid solution alloy by SPS preparation method. International Journal of Hydrogen Energy, 2009, 34, 8597-8602.	3.8	24
88	Toward 3D Solid-State Batteries via Atomic Layer Deposition Approach. Frontiers in Energy Research, 2018, 6, .	1.2	23
89	Role of graphene in enhancing the mechanical properties of TiO ₂ /graphene heterostructures. Nanoscale, 2017, 9, 11678-11684.	2.8	22
90	Atomic Layer Deposition of Hierarchical CNTs@FePO ₄ Architecture as a 3D Electrode for Lithiumâ€ion and Sodiumâ€ion Batteries, Advanced Materials Interfaces, 2016, 3, 1600468	1.9	21

#	Article	lF	CITATIONS
91	Template-assisted molten-salt synthesis of hierarchical lithium-rich layered oxide nanowires as high-rate and long-cycling cathode materials. Electrochimica Acta, 2020, 333, 135558.	2.6	20
92	Materials and Structure Design for Solid-State Zinc-Ion Batteries: A Mini-Review. Frontiers in Energy Research, 2021, 8, .	1.2	19
93	Minimizing Polysulfide Shuttle Effect in Lithium-Ion Sulfur Batteries by Anode Surface Passivation. ACS Applied Materials & Interfaces, 2018, 10, 21965-21972.	4.0	18
94	Low temperature induced highly stable Zn metal anodes for aqueous zinc-ion batteries. Chemical Communications, 2021, 57, 11477-11480.	2.2	18
95	Atomic layer deposited aluminum oxynitride coating for high-performance Si anode in lithium-ion batteries. Applied Surface Science, 2022, 578, 151982.	3.1	18
96	Polyacrylonitrileâ€Reinforced Composite Gel Polymer Electrolytes for Stable Potassium Metal Anodes. Small, 2022, 18, e2107186.	5.2	18
97	Hydrogen storage performance of Mg-based composites prepared by spark plasma sintering. Journal of Alloys and Compounds, 2009, 486, 338-342.	2.8	17
98	Enhanced Potassium Storage Performance for K-Te Batteries <i>via</i> Electrode Design and Electrolyte Salt Chemistry. ACS Applied Materials & Interfaces, 2021, 13, 16345-16354.	4.0	17
99	A novel approach in controlling the conductivity of thin films using molecular layer deposition. Applied Surface Science, 2015, 357, 1319-1324.	3.1	15
100	A facile and low-cost Al ₂ O ₃ coating as an artificial solid electrolyte interphase layer on graphite/silicon composites for lithium-ion batteries. Nanotechnology, 2021, 32, 144001.	1.3	15
101	Spark Plasma Sintering of Lithium Aluminum Germanium Phosphate Solid Electrolyte and its Electrochemical Properties. Nanomaterials, 2019, 9, 1086.	1.9	14
102	Deciphering pitting behavior of lithium metal anodes in lithium sulfur batteries. Journal of Energy Chemistry, 2020, 49, 257-261.	7.1	14
103	Orientation and Ordering of Organic and Hybrid Inorganic–Organic Polyurea Films Using Molecular Layer Deposition. Journal of Physical Chemistry C, 2017, 121, 11757-11764.	1.5	13
104	Artificial Cathode-Electrolyte Interphase towards High-Performance Lithium-Ion Batteries: A Case Study of Î ² -AgVO3. Nanomaterials, 2021, 11, 569.	1.9	12
105	The role of carbon pore structure in tellurium/carbon cathodes for lithium-tellurium batteries. Electrochimica Acta, 2021, 388, 138621.	2.6	12
106	Morphology- and lattice stability-dependent performance of nanostructured Li4Ti5O12 probed by in situ high-pressure Raman spectroscopy and synchrotron X-ray diffraction. CrystEngComm, 2016, 18, 736-743.	1.3	11
107	Nanoscale Al2O3 coating to stabilize selenium cathode for sodium–selenium batteries. Journal of Materials Research, 2020, 35, 747-755.	1.2	11
108	Protic ethers as highly efficient hydrogen-bond regulators for aqueous eutectic electrolytes. Journal of Materials Chemistry A, 2022, 10, 13711-13718.	5.2	11

#	ARTICLE	IF	CITATIONS
109	Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	0.9	9
110	Durable Lithium/Selenium Batteries Enabled by the Integration of MOF-Derived Porous Carbon and Alucone Coating. Nanomaterials, 2021, 11, 1976.	1.9	9
111	Quasi-solid-state lithium-tellurium batteries based on flexible gel polymer electrolytes. Journal of Colloid and Interface Science, 2022, 605, 547-555.	5.0	9
112	3D Nano-heterostructure of ZnMn ₂ O ₄ @Graphene-Carbon Microtubes for High-Performance Li-Ion Capacitors. ACS Applied Materials & Interfaces, 2021, 13, 52542-52548.	4.0	9
113	Characteristics of interface between solid electrolyte and electrode in all-solid-state batteries prepared by spark plasma sintering. Journal of Power Sources, 2022, 521, 230964.	4.0	9
114	Molecular-layer-deposited tincone: a new hybrid organic–inorganic anode material for three-dimensional microbatteries. Chemical Communications, 2020, 56, 13221-13224.	2.2	8
115	Water/acetonitrile hybrid electrolyte enables using smaller ions for achieving superior energy density in carbon-based supercapacitors. Journal of Power Sources, 2021, 498, 229905.	4.0	8
116	The role of spark plasma sintering on the improvement of hydrogen storage properties of Mg-based composites. International Journal of Hydrogen Energy, 2010, 35, 8080-8087.	3.8	7
117	Highâ€Performance Potassiumâ€īellurium Batteries Stabilized by Interface Engineering. Small, 2022, 18, e2200085.	5.2	7
118	Hydrogen storage properties of Mg–50vol.%V7.4Zr7.4Ti7.4Ni composite prepared by spark plasma sintering. International Journal of Hydrogen Energy, 2009, 34, 4365-4370.	3.8	6
119	Microstructure and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte prepared by spark plasma sintering. Ceramics International, 2020, 46, 7634-7641.	2.3	6
120	Waste to Value-Added Product: Developing Electrically Conductive Nanocomposites Using a Non-Recyclable Plastic Waste Containing Vulcanized Rubber. Polymers, 2021, 13, 2427.	2.0	5
121	A Stable Lithium-ion Selenium Batteries Enabled by Microporous Carbon/Se and Fluoroethylene Carbonate Additive. ECS Transactions, 2020, 97, 279-288.	0.3	4
122	New Hybrid Organic-Inorganic Thin Films by Molecular Layer Deposition for Rechargeable Batteries. Frontiers in Energy Research, 2021, 9, .	1.2	4
123	Modulating the Electronic Metalâ€Support Interactions in Singleâ€Atom Pt ₁ â^CuO Catalyst for Boosting Acetone Oxidation. Angewandte Chemie, 2022, 134, .	1.6	4
124	Investigation of amorphous to crystalline phase transition of sodium titanate by X-ray absorption spectroscopy and scanning transmission X-ray microscopy. Canadian Journal of Chemistry, 2017, 95, 1163-1169.	0.6	2
125	Improving the Stability of Lithium Aluminum Germanium Phosphate with Lithium Metal by Interface Engineering. Nanomaterials, 2022, 12, 1912.	1.9	2

126 Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. , 0, .

1

#	Article	IF	CITATIONS
127	Editorial: Energy Storage Systems Beyond Li-Ion Intercalation Chemistry. Frontiers in Energy Research, 2021, 9, .	1.2	0
128	Electrode and Interface Design for High-Performance Lithium/Sodium-Selenium Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 470-470.	0.0	0
129	Tincone-New Hybrid Organic-Inorganic Anode Material for High Performance Li-Ion Battery. ECS Meeting Abstracts, 2020, MA2020-02, 374-374.	0.0	0
130	Investigation of Cathode Structure and Electrolyte Chemistry for Emerging Metal-Tellurium Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 567-567.	0.0	0
131	"Tri-Solvent-in-Salt―Electrolytes for High-Performance Supercapacitors. ECS Meeting Abstracts, 2022, MA2022-01, 1412-1412.	0.0	0
132	Synthesizing Microporous Carbon from Soybean and Use It to Develop Cathode Material for High Performance Lithium-Selenium Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 337-337.	0.0	0
133	An in-Depth Study of How Zinc Metal Surface Morphology Determines Aqueous Zinc-Ion Battery Stability. ECS Meeting Abstracts, 2022, MA2022-01, 14-14.	0.0	0
134	NiO Modified CN Film As Photoanodes for Photoelectrochemical Water Oxidation. ECS Meeting Abstracts, 2022, MA2022-01, 1592-1592.	0.0	0
135	Optimization of Loading Content of Li ₄ Ti ₅ O ₁₂ -Hard Carbon Composite Anode for the Fast Charging Li-Ion Battery. ECS Meeting Abstracts, 2022, MA2022-01, 226-226.	0.0	0
136	Investigation and Design of Soybean-Derived Carbon Anode Materials for Potassium-Ion Battery Applications. ECS Meeting Abstracts, 2022, MA2022-01, 535-535.	0.0	0