
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7542745/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemo- and stereoselective CH oxidations and epoxidations/cis-dihydroxylations with H2O2, catalyzed by non-heme iron and manganese complexes. Coordination Chemistry Reviews, 2012, 256, 1418-1434.	18.8	348
2	Active sites and mechanisms of bioinspired oxidation with H2O2, catalyzed by non-heme Fe and related Mn complexes. Coordination Chemistry Reviews, 2014, 276, 73-96.	18.8	206
3	Asymmetric Epoxidations with H ₂ O ₂ on Fe and Mn Aminopyridine Catalysts: Probing the Nature of Active Species by Combined Electron Paramagnetic Resonance and Enantioselectivity Study. ACS Catalysis, 2012, 2, 1196-1202.	11.2	204
4	Mechanism of dimethylzirconocene activation with methylaluminoxane: NMR monitoring of intermediates at high Al/Zr ratios. Macromolecular Chemistry and Physics, 2000, 201, 558-567.	2.2	146
5	EPR Spectroscopic Trapping of the Active Species of Nonheme Iron-Catalyzed Oxidation. Journal of the American Chemical Society, 2009, 131, 10798-10799.	13.7	137
6	Evidence for the Formation of an Iodosylbenzene(salen)iron Active Intermediate in a (Salen)iron(III)-Catalyzed Asymmetric Sulfide Oxidation. Angewandte Chemie - International Edition, 2004, 43, 5228-5230.	13.8	128
7	Highly Efficient, Regioselective, and Stereospecific Oxidation of Aliphatic C–H Groups with H ₂ O ₂ , Catalyzed by Aminopyridine Manganese Complexes. Organic Letters, 2012, 14, 4310-4313.	4.6	123
8	Highly Enantioselective Bioinspired Epoxidation of Electron-Deficient Olefins with H ₂ O ₂ on Aminopyridine Mn Catalysts. ACS Catalysis, 2014, 4, 1599-1606.	11.2	118
9	EPR,1H and2H NMR, and Reactivity Studies of the Iron–Oxygen Intermediates in Bioinspired Catalyst Systems. Inorganic Chemistry, 2011, 50, 5526-5538.	4.0	96
10	Nonâ€Heme Manganese Complexes Catalyzed Asymmetric Epoxidation of Olefins by Peracetic Acid and Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2011, 353, 885-889.	4.3	96
11	EPR Spectroscopic Detection of the Elusive FeVâ•O Intermediates in Selective Catalytic Oxofunctionalizations of Hydrocarbons Mediated by Biomimetic Ferric Complexes. ACS Catalysis, 2015, 5, 2702-2707.	11.2	90
12	Frontiers of mechanistic studies of coordination polymerization and oligomerization of \hat{I}_{\pm} -olefins. Coordination Chemistry Reviews, 2012, 256, 2994-3007.	18.8	88
13	Formation and Nature of the Active Sites in Bis(imino)pyridine Iron-Based Polymerization Catalysts. Organometallics, 2009, 28, 3225-3232.	2.3	85
14	Multinuclear NMR investigation of methylaluminoxane. Macromolecular Chemistry and Physics, 1997, 198, 3845-3854.	2.2	80
15	Mechanism of Selective C–H Hydroxylation Mediated by Manganese Aminopyridine Enzyme Models. ACS Catalysis, 2015, 5, 39-44.	11.2	76
16	Ironâ€Catalyzed Oxidation of Thioethers by Iodosylarenes: Stereoselectivity and Reaction Mechanism. Chemistry - A European Journal, 2007, 13, 8045-8050.	3.3	74
17	Formation and Structures of Hafnocene Complexes in MAO- and AlBu ⁱ ₃ /CPh ₃ [B(C ₆ F ₅) ₄]-Activated Systems. Organometallics, 2008, 27, 6333-6342.	2.3	68
18	Nonheme Manganese-Catalyzed Asymmetric Oxidation. A Lewis Acid Activation versus Oxygen Rebound Mechanism: Evidence for the "Third Oxidant†Inorganic Chemistry, 2010, 49, 8620-8628	4.0	68

#	Article	IF	CITATIONS
19	1H NMR and EPR spectroscopic monitoring of the reactive intermediates of (Salen)MnIII catalyzed olefin epoxidation. Journal of Molecular Catalysis A, 2000, 158, 19-35.	4.8	66
20	Active Intermediates in Ethylene Polymerization over Titanium Bis(phenoxyimine) Catalysts. Organometallics, 2005, 24, 5660-5664.	2.3	66
21	ansa-Titanocene Catalysts for α-Olefin Polymerization. Syntheses, Structures, and Reactions with Methylaluminoxane and Boron-Based Activators. Organometallics, 2005, 24, 894-904.	2.3	66
22	1H and 13C NMR Spectroscopic Study of Titanium(IV) Species Formed by Activation of Cp2TiCl2 and [(Me4C5)SiMe2NtBu]TiCl2 with Methylaluminoxane (MAO). Organometallics, 2004, 23, 149-152.	2.3	65
23	Enantioselective Epoxidations of Olefins with Various Oxidants on Bioinspired Mn Complexes: Evidence for Different Mechanisms and Chiral Additive Amplification. ACS Catalysis, 2016, 6, 979-988.	11.2	64
24	Vinyl Polymerization of Norbornene on Nickel Complexes with Bis(imino)pyridine Ligands Containing Electron-Withdrawing Groups. Organometallics, 2012, 31, 1143-1149.	2.3	57
25	Iron-Catalyzed Enantioselective Epoxidations with Various Oxidants: Evidence for Different Active Species and Epoxidation Mechanisms. ACS Catalysis, 2017, 7, 60-69.	11.2	56
26	Dramatic Effect of Carboxylic Acid on the Electronic Structure of the Active Species in Fe(PDP)-Catalyzed Asymmetric Epoxidation. ACS Catalysis, 2016, 6, 5399-5404.	11.2	54
27	Non-heme oxoiron(V) intermediates in chemo-, regio- and stereoselective oxidation of organic substrates. Coordination Chemistry Reviews, 2019, 384, 126-139.	18.8	53
28	1H-, 13C-NMR and ethylene polymerization studies of zirconocene/MAO catalysts: effect of the ligand structure on the formation of active intermediates and polymerization kinetics. Journal of Organometallic Chemistry, 2003, 683, 92-102.	1.8	49
29	Highly Enantioselective Câ^'H Oxidation of Arylalkanes with H ₂ O ₂ in the Presence of Chiral Mnâ€Aminopyridine Complexes. ChemCatChem, 2017, 9, 4580-4586.	3.7	48
30	Enantioselective Benzylic Hydroxylation of Arylalkanes with H ₂ O ₂ in Fluorinated Alcohols in the Presence of Chiral Mn Aminopyridine Complexes. ChemCatChem, 2018, 10, 5323-5330.	3.7	47
31	Activation ofrac-Me2Si(ind)2ZrCl2 by Methylalumoxane Modified by Aluminum Alkyls: An EPR Spin-Probe,1H NMR, and Polymerization Study. Macromolecular Chemistry and Physics, 2006, 207, 327-335.	2.2	44
32	EPR Monitoring of Vanadium(IV) Species Formed upon Activation of Vanadium(V) Polyphenolate Precatalysts with AlR ₂ Cl and AlR ₂ Cl/Ethyltrichloroacetate (R = Me, Et). Organometallics, 2009, 28, 6714-6720.	2.3	43
33	Chiral Manganese Aminopyridine Complexes: the Versatile Catalysts of Chemo―and Stereoselective Oxidations with H ₂ O ₂ . Chemical Record, 2018, 18, 78-90.	5.8	41
34	Ethylene polymerization of nickel catalysts with α-diimine ligands: factors controlling the structure of active species and polymer properties. Dalton Transactions, 2019, 48, 7974-7984.	3.3	40
35	The Origin of Living Polymerization with an <i>o</i> â€Fluorinated Catalyst: NMR Spectroscopic Characterization of Chainâ€Carrying Species. Chemistry - A European Journal, 2012, 18, 848-856.	3.3	39
36	13C-NMR study of Ti(IV) species formed by Cp*TiMe3 and Cp*TiCl3 activation with methylaluminoxane (MAO). Journal of Organometallic Chemistry, 2003, 683, 23-28.	1.8	38

#	Article	IF	CITATIONS
37	Investigating the Nature of the Active Species in Bis(imino)pyridine Cobalt Ethylene Polymerization Catalysts. Organometallics, 2009, 28, 6003-6013.	2.3	38
38	Direct Evaluation of the Reactivity of Nonheme Iron(V)–Oxo Intermediates toward Arenes. ACS Catalysis, 2018, 8, 5255-5260.	11.2	38
39	Highly enantioselective undirected catalytic hydroxylation of benzylic CH2 groups with H2O2. Journal of Catalysis, 2020, 390, 170-177.	6.2	38
40	The Active Intermediates of Non-Heme-Iron-Based Systems for Catalytic Alkene Epoxidation with H2O2/CH3COOH. European Journal of Inorganic Chemistry, 2007, 2007, 852-857.	2.0	37
41	EPR detection of Fe(V)=O active species in nonheme iron-catalyzed oxidations. Catalysis Communications, 2012, 29, 105-108.	3.3	37
42	Asymmetric Autoamplification in the Oxidative Kinetic Resolution of Secondary Benzylic Alcohols Catalyzed by Manganese Complexes. ChemCatChem, 2017, 9, 2599-2607.	3.7	37
43	An EPR study of the vanadium species formed upon interaction of vanadyl N and C-capped tris(phenolate) complexes with AlEt3 and AlEt2Cl. Journal of Molecular Catalysis A, 2009, 303, 23-29.	4.8	36
44	Direct Selective Oxidative Functionalization of C–H Bonds with H2O2: Mn-Aminopyridine Complexes Challenge the Dominance of Non-Heme Fe Catalysts. Molecules, 2016, 21, 1454.	3.8	35
45	Formation of Trivalent Zirconocene Complexes from ansa-Zirconocene-Based Olefin-Polymerization Precatalysts: An EPR- and NMR-Spectroscopic Study. Journal of the American Chemical Society, 2013, 135, 10710-10719.	13.7	34
46	Bioinspired oxidations of aliphatic C–H groups with H2O2 in the presence of manganese complexes. Journal of Organometallic Chemistry, 2015, 793, 102-107.	1.8	32
47	To Rebound orRebound? Evidence for the "Alternative Rebound―Mechanism in C–H Oxidations by the Systems Nonheme Mn Complex/H ₂ O ₂ /Carboxylic Acid. ACS Catalysis, 2021, 11, 5517-5524.	11.2	29
48	An EPR Study of the V(IV) Species Formed Upon Activation of a Vanadyl Phenoxyimine Polymerization Catalyst with AlR ₃ and AlR ₂ Cl (R = Me, Et). Macromolecular Chemistry and Physics, 2009, 210, 542-548.	2.2	28
49	Bioinspired Mn-aminopyridine catalyzed epoxidations of olefins with various oxidants: Enantioselectivity and mechanism. Catalysis Today, 2016, 278, 30-39.	4.4	28
50	Activation of Bis(pyrrolylaldiminato) and (Salicylaldiminato)(pyrrolylaldiminato) Titanium Polymerization Catalysts with Methylalumoxane. Organometallics, 2007, 26, 288-293.	2.3	27
51	NMR and EPR Spectroscopic Identification of Intermediates Formed upon Activation of 8-Mesitylimino-5,6,7-trihydroquinolylnickel Dichloride with AlR ₂ Cl (R = Me, Et). Organometallics, 2015, 34, 3222-3227.	2.3	27
52	Comparisons between homogeneous and immobilized 1-(2,6-dibenzhydryl-4-nitrophenylimino)-2-mesityliminoacenaphthylnickel bromide as a precatalyst in ethylene polymerization. Journal of Catalysis, 2019, 372, 103-108.	6.2	26
53	Active Species of Nonheme Iron and Manganese-Catalyzed Oxidations. Topics in Catalysis, 2013, 56, 939-949.	2.8	25
54	Highly Efficient Aromatic Câ^'H Oxidation with H ₂ O ₂ in the Presence of Iron Complexes of the PDP Family. ChemCatChem, 2018, 10, 4052-4057.	3.7	24

#	Article	IF	CITATIONS
55	Formation of Cationic Intermediates upon the Activation of Bis(imino)pyridine Nickel Catalysts. Organometallics, 2013, 32, 2187-2191.	2.3	23
56	Activation of Bis(phenoxyimino)zirconium Polymerization Catalysts with Methylaluminoxane and AlMe ₃ /[CPh ₃] ⁺ [B(C ₆ F ₅) ₄] ^{-< Organometallics, 2007, 26, 4810-4815.}	/ a up>.	21
57	Highâ€Spin and Lowâ€Spin Perferryl Intermediates in Fe(PDP)â€Catalyzed Epoxidations. ChemCatChem, 2019, 11, 5345-5352.	3.7	21
58	EPR spectroscopic study of Ni(I) species in the catalyst system for ethylene polymerization based on α-diimine Ni(II) complex activated by MMAO. Journal of Organometallic Chemistry, 2019, 880, 267-271.	1.8	21
59	Recent progress in catalytic oxygenation of aromatic C–H groups with the environmentally benign oxidants H ₂ O ₂ and O ₂ . Applied Organometallic Chemistry, 2020, 34, e5900.	3.5	21
60	Mn aminopyridine oxidase mimics: Switching between biosynthetic-like and xenobiotic regioselectivity in C H oxidation of (-)-ambroxide. Journal of Catalysis, 2021, 399, 224-229.	6.2	21
61	Direct reactivity studies of non-heme iron-oxo intermediates toward alkane oxidation. Catalysis Communications, 2018, 108, 77-81.	3.3	17
62	Methods for selective benzylic C–H oxofunctionalization of organic compounds. Russian Chemical Reviews, 2020, 89, 587-628.	6.5	17
63	1H and 13C NMR Studies of Cationic Intermediates Formed upon Activation of "Oscillating―Catalyst (2-PhInd)2ZrCl2 with MAO, MMAO, and AlMe3/[CPh3]+[B(C6F5)4] Organometallics, 2007, 26, 1536-1540.	2.3	16
64	NMR spectroscopic identification of Ni(<scp>ii</scp>) species formed upon activation of (α-diimine)NiBr ₂ polymerization catalysts with MAO and MMAO. Dalton Transactions, 2018, 47, 4968-4974.	3.3	16
65	On the nature of the active intermediates in iron-catalyzed oxidation of cycloalkanes with hydrogen peroxide and peracids. Molecular Catalysis, 2018, 455, 6-13.	2.0	16
66	Stability of low-spin ferric hydroperoxo and alkylperoxo complexes with tris(2-pyridylmethyl)amine. Mendeleev Communications, 2003, 13, 175-177.	1.6	15
67	Titanium Salan/Salalen Complexes: The Twofaced Janus of Asymmetric Oxidation Catalysis. Chemical Record, 2016, 16, 924-939.	5.8	15
68	Formation and Evolution of Chainâ€Propagating Species Upon Ethylene Polymerization with Neutral Salicylaldiminato Nickel(II) Catalysts. Chemistry - A European Journal, 2013, 19, 11409-11417.	3.3	14
69	<pre>¹H and ²H NMR Spectroscopic Characterization of Heterobinuclear Ion Pairs Formed upon the Activation of Bis(imino)pyridine Vanadium(III) Precatalysts with AlMe₃/[Ph₃C]⁺[B(C₆F₅)₄]^{a and MAO. Organometallics, 2014, 33, 2583-2587.}</pre>	,2,3 	14
70	EPR Identification of Zr(III) Complexes Formed upon Interaction of (2-PhInd)2ZrCl2 andrac-Me2Si(1-Ind)2ZrCl2 with MAO and MMAO. Macromolecular Chemistry and Physics, 2007, 208, 1168-1175.	2.2	13
71	Activation of an α-Diimine Ni(II) Precatalyst with AlMe ₃ and Al ⁱ Bu ₃ : Catalytic and NMR and EPR Spectroscopy Studies. Organometallics, 2020, 39, 3034-3040.	2.3	13
72	Palladium aminopyridine complexes catalyzed selective benzylic C–H oxidations with peracetic acid. Dalton Transactions, 2020, 49, 11150-11156.	3.3	13

#	Article	IF	CITATIONS
73	Autoamplificationâ€Enhanced Oxidative Kinetic Resolution of <i>sec</i> â€Alcohols and Alkyl Mandelates, and its Kinetic Model. ChemCatChem, 2018, 10, 2693-2699.	3.7	11
74	The nature of nickel species formed upon the activation of $\hat{I}\pm$ -diimine nickel(II) pre-catalyst with alkylaluminum sesquichlorides. Journal of Organometallic Chemistry, 2020, 907, 121063.	1.8	11
75	Vanadium olefin polymerization catalysts: NMR spectroscopic characterization of V(III) intermediates. Journal of Organometallic Chemistry, 2018, 867, 4-13.	1.8	10
76	Effect of different carboxylic acids on the aromatic hydroxylation with H2O2 in the presence of an iron aminopyridine complex. Journal of Organometallic Chemistry, 2018, 871, 130-134.	1.8	10
77	Formation of low-spin peroxoiron(III) complexes in Gif-type catalytic systems. Mendeleev Communications, 1996, 6, 33-34.	1.6	9
78	Lowâ€Spin and Highâ€Spin Perferryl Intermediates in Nonâ€Heme Iron Catalyzed Oxidations of Aliphatic Câ^'H Groups. Chemistry - A European Journal, 2021, 27, 7781-7788.	3.3	8
79	Reactivity vs. Selectivity of Biomimetic Catalyst Systems of the Fe(PDP) Family through the Nature and Spin State of the Active Ironâ€Oxygen Species. Chemical Record, 2022, 22, e202100334.	5.8	8
80	Non-heme perferryl intermediates: Effect of spin state on the epoxidation enantioselectivity. Molecular Catalysis, 2021, 502, 111403.	2.0	7
81	Chiral Autoamplification Meets Dynamic Chirality Control to Suggest Nonautocatalytic Chemical Model of Prebiotic Chirality Amplification. Research, 2019, 2019, 4756025.	5.7	7
82	Nature of Heterobinuclear Ni(I) Complexes Formed upon the Activation of the α-Diimine Complex LNillBr2 with AlMe3 and MMAO. Organometallics, 2021, 40, 907-914.	2.3	6
83	α-Diimine Ni-Catalyzed Ethylene Polymerizations: On the Role of Nickel(I) Intermediates. Catalysts, 2021, 11, 1386.	3.5	6
84	1H and 2H NMR spectroscopic study of the ion pairs formed upon the activation of vanadium(III) α-diimine pre-catalyst with AlMe3/[Ph3C][B(C6F5)4] and MAO. Journal of Molecular Catalysis A, 2016, 423, 333-338.	4.8	5
85	Vanadium(III) atalyzed Polymerization of αâ€Olefins: Detailed NMR Spectroscopic Characterization of Intermediates Modeling the Active Species of Polymerization. ChemCatChem, 2017, 9, 1253-1260.	3.7	5
86	Palladiumâ€Aminopyridine Catalyzed Câ^'H Oxygenation: Probing the Nature of Metal Based Oxidant. ChemCatChem, 2021, 13, 5109-5120.	3.7	5
87	High‧pin and Low‧pin State Perferryl Intermediates: Reactivity‧electivity Correlation in Fe(PDP) Catalyzed Oxidation of (+)‧clareolide. ChemCatChem, 2022, 14, .	3.7	5
88	Ni(I) Intermediates Formed upon Activation of a Ni(II) α-Diimine Ethylene Polymerization Precatalyst with AlR ₃ (R = Me, Et, and ^{<i>i</i>} Bu), AlR ₂ Cl (R = Me, Et), and MMAO: A Comparative Study. Organometallics, 2022, 41, 1015-1024.	2.3	5
89	X-ray crystal structure of [BPMEN(Cl)FellIOFellI(Cl)BPMEN](ClO4)2 [BPMEN = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine] and the assignment of its 1H NMR peaks in CD3CN. Mendeleev Communications, 2007, 17, 291-293.	1.6	4
90	Aromatic C H oxidation by non-heme iron(V)-oxo intermediates bearing aminopyridine ligands. Molecular Catalysis, 2020, 483, 110708.	2.0	4

#	Article	IF	CITATIONS
91	Direct C–H Oxidation of Aromatic Substrates in the Presence of Biomimetic Iron Complexes. Green Chemistry and Sustainable Technology, 2019, , 253-276.	0.7	1