Dabang Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7542683/publications.pdf

Version: 2024-02-01

			147801	197818
	121	3,092	31	49
	papers	citations	h-index	g-index
ĺ				
	132	132	132	2842
	132	132	132	2072
	all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245, 317-331.	2.3	198
2	Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon. Advances in Atmospheric Sciences, 2020, 37, 1102-1118.	4.3	145
3	Simulation of the Last Glacial Maximum climate over East Asia with a regional climate model nested in a general circulation model. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 248, 376-390.	2.3	136
4	Future extreme climate changes linked to global warming intensity. Science Bulletin, 2017, 62, 1673-1680.	9.0	124
5	Reliability of climate models for China through the <scp>IPCC</scp> Third to Fifth Assessment Reports. International Journal of Climatology, 2016, 36, 1114-1133.	3.5	117
6	East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models. Science Bulletin, 2013, 58, 1427-1435.	1.7	113
7	The impact of regional uplift of the Tibetan Plateau on the Asian monsoon climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 417, 137-150.	2.3	90
8	Natural interdecadal weakening of East Asian summer monsoon in the late 20th century. Science Bulletin, 2005, 50, 1923.	1.7	71
9	Modeling the middle Pliocene climate with a global atmospheric general circulation model. Journal of Geophysical Research, 2005, 110 , n/a-n/a.	3.3	69
10	Latest update of the climatology and changes in the seasonal distribution of precipitation over China. Theoretical and Applied Climatology, 2013, 113, 599-610.	2.8	68
11	Last Glacial Maximum East Asian Monsoon: Results of PMIP Simulations. Journal of Climate, 2010, 23, 5030-5038.	3.2	63
12	Changes in Tibetan Plateau latitude as an important factor for understanding East Asian climate since the Eocene: A modeling study. Earth and Planetary Science Letters, 2018, 484, 295-308.	4.4	62
13	Mid-Pliocene East Asian monsoon climate simulated in the PlioMIP. Climate of the Past, 2013, 9, 2085-2099.	3.4	60
14	Mid-Holocene East Asian summer monsoon strengthening: Insights from Paleoclimate Modeling Intercomparison Project (PMIP) simulations. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 369, 422-429.	2.3	58
15	Considerable Model–Data Mismatch in Temperature over China during the Mid-Holocene: Results of PMIP Simulations. Journal of Climate, 2012, 25, 4135-4153.	3.2	57
16	Last glacial maximum climate over China from PMIP simulations. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 347-357.	2.3	56
17	Projected signals in climate extremes over China associated with a 2 \hat{A}° C global warming under two RCP scenarios. International Journal of Climatology, 2018, 38, e678.	3.5	56
18	Timing and associated climate change of a 2 °C global warming. International Journal of Climatology, 2016, 36, 4512-4522.	3.5	49

#	Article	IF	Citations
19	Modeling the climate effects of different subregional uplifts within the Himalaya-Tibetan Plateau on Asian summer monsoon evolution. Science Bulletin, 2012, 57, 4617-4626.	1.7	46
20	Northern Westerlies during the Last Glacial Maximum: Results from CMIP5 Simulations. Journal of Climate, 2018, 31, 1135-1153.	3.2	46
21	Mid-Holocene net precipitation changes over China: model–data comparison. Quaternary Science Reviews, 2013, 82, 104-120.	3.0	45
22	Revisiting last glacial maximum climate over China and East Asian monsoon using PMIP3 simulations. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 453, 115-126.	2.3	44
23	The 4.2 ka BP event: multi-proxy records from a closed lake in the northern margin of the East Asian summer monsoon. Climate of the Past, 2018, 14, 1417-1425.	3.4	41
24	Decoupling of Climatic Drying and Asian Dust Export During the Holocene. Journal of Geophysical Research D: Atmospheres, 2018, 123, 915-928.	3.3	39
25	Last Glacial Maximum over China: Sensitivities of climate to paleovegetation and Tibetan ice sheet. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	38
26	Vegetation feedback under future global warming. Theoretical and Applied Climatology, 2011, 106, 211-227.	2.8	37
27	Mid-Holocene global monsoon area and precipitation from PMIP simulations. Climate Dynamics, 2015, 44, 2493-2512.	3.8	36
28	Sensitivity of East Asian climate to the progressive uplift and expansion of the Tibetan Plateau under the mid-Pliocene boundary conditions. Advances in Atmospheric Sciences, 2008, 25, 709-722.	4.3	35
29	Time of emergence of climate signals over China under the RCP4.5 scenario. Climatic Change, 2014, 125, 265-276.	3.6	35
30	Ensemble projection of 1–3°C warming in China. Science Bulletin, 2009, 54, 3326-3334.	1.7	34
31	Paleoclimate modeling in China: A review. Advances in Atmospheric Sciences, 2015, 32, 250-275.	4.3	34
32	The concept of global monsoon applied to the last glacial maximum: A multi-model analysis. Quaternary Science Reviews, 2015, 126, 126-139.	3.0	32
33	Future changes in Aridity Index at two and four degrees of global warming above preindustrial levels. International Journal of Climatology, 2021, 41, 278-294.	3.5	30
34	Simulation of the Direct Radiative Effect of Mineral Dust Aerosol on the Climate at the Last Glacial Maximum. Journal of Climate, 2011, 24, 843-858.	3.2	28
35	Extreme temperature and precipitation changes associated with four degree of global warming above preâ€industrial levels. International Journal of Climatology, 2019, 39, 1822-1838.	3.5	27
36	Comparison of the climate effects of surface uplifts from the northern Tibetan Plateau, the Tianshan, and the Mongolian Plateau on the East Asian climate. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7949-7970.	3.3	26

#	Article	IF	CITATIONS
37	Climate Change of $4\hat{A}^{\circ}$ C Global Warming above Pre-industrial Levels. Advances in Atmospheric Sciences, 2018, 35, 757-770.	4.3	26
38	Mid-Pliocene westerlies from PlioMIP simulations. Advances in Atmospheric Sciences, 2015, 32, 909-923.	4.3	24
39	An intercomparison of CMIP5 and CMIP3 models for interannual variability of summer precipitation in Panâ€Asian monsoon region. International Journal of Climatology, 2015, 35, 3770-3780.	3.5	22
40	Precipitation variation over eastern China and arid central Asia during the past millennium and its possible mechanism: Perspectives from PMIP3 experiments. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,989.	3.3	22
41	Global Cooling Contributed to the Establishment of a Modern‣ike East Asian Monsoon Climate by the Early Miocene. Geophysical Research Letters, 2018, 45, 11,941.	4.0	21
42	Northwestward Migration of the Northern Edge of the East Asian Summer Monsoon During the Midâ€Pliocene Warm Period: Simulations and Reconstructions. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1392-1404.	3.3	21
43	Difference between the North Atlantic and Pacific meridional overturning circulation in response to the uplift of the Tibetan Plateau. Climate of the Past, 2018, 14, 751-762.	3.4	21
44	Causes of mid-Pliocene strengthened summer and weakened winter monsoons over East Asia. Advances in Atmospheric Sciences, 2015, 32, 1016-1026.	4.3	20
45	Strengthening and Westward Shift of the Tropical Pacific Walker Circulation during the Mid-Holocene: PMIP Simulation Results. Journal of Climate, 2018, 31, 2283-2298.	3.2	20
46	Influence of Major Stratospheric Sudden Warming on the Unprecedented Cold Wave in East Asia in January 2021. Advances in Atmospheric Sciences, 2022, 39, 576-590.	4.3	20
47	Causes of ENSO Weakening during the Mid-Holocene. Journal of Climate, 2017, 30, 7049-7070.	3.2	19
48	Moisture sources of the Chinese Loess Plateau during 1979–2009. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509, 156-163.	2.3	19
49	Prolonged Heavy Snowfall During the Younger Dryas. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,748.	3.3	19
50	Mid-Pliocene global land monsoon from PlioMIP1 simulations. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 512, 56-70.	2.3	17
51	Effects of Tibetan Plateau Growth, Paratethys Sea Retreat and Global Cooling on the East Asian Climate by the Early Miocene. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009655.	2.5	17
52	Migration of the Northern Boundary of the East Asian Summer Monsoon Over the Last 21,000Âyears. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035078.	3.3	17
53	Warmingâ€Induced Northwestward Migration of the Asian Summer Monsoon in the Geological Past: Evidence From Climate Simulations and Geological Reconstructions. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035190.	3.3	17
54	Simulation of sea surface temperature changes in the Middle Pliocene warm period and comparison with reconstructions. Science Bulletin, 2011, 56, 890-899.	1.7	16

#	Article	IF	CITATIONS
55	A multi-model analysis of moisture changes during the last glacial maximum. Quaternary Science Reviews, 2018, 191, 363-377.	3.0	16
56	Variations in northeast Asian summer precipitation driven by the Atlantic multidecadal oscillation. International Journal of Climatology, 2021, 41, 1682-1695.	3 . 5	16
57	Vegetation and soil feedbacks at the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 268, 39-46.	2.3	15
58	Simulated warm periods of climate over China during the last two millennia: The Suiâ€Tang warm period versus the Songâ€Yuan warm period. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2229-2241.	3.3	15
59	A multi-model analysis of glacier equilibrium line altitudes in western China during the last glacial maximum. Science China Earth Sciences, 2019, 62, 1241-1255.	5. 2	15
60	High-resolution simulation of Asian monsoon response to regional uplift of the Tibetan Plateau with regional climate model nested with global climate model. Global and Planetary Change, 2018, 169, 34-47.	3 . 5	14
61	Multidecadal Variations in the East Asian Winter Monsoon and Their Relationship with the Atlantic Multidecadal Oscillation since 1850. Journal of Climate, 2021, 34, 7525-7539.	3.2	13
62	Mid-Holocene and last glacial maximum changes in monsoon area and precipitation over China. Chinese Science Bulletin, 2015, 60, 400-410.	0.7	13
63	Detectable anthropogenic influence on summer compound hot events over China from 1965 to 2014. Environmental Research Letters, 2022, 17, 034042.	5.2	13
64	Impact of topography and land-sea distribution on East Asian paleoenvironmental patterns. Advances in Atmospheric Sciences, 2006, 23, 258-266.	4.3	12
65	A possible impact of cooling over the Tibetan Plateau on the mid-Holocene East Asian monsoon climate. Advances in Atmospheric Sciences, 2006, 23, 543-550.	4.3	12
66	Strengthened African summer monsoon in the mid-Piacenzian. Advances in Atmospheric Sciences, 2016, 33, 1061-1070.	4.3	12
67	Interannual climate variability change during the Medieval Climate Anomaly and Little Ice Age in PMIP3 last millennium simulations. Advances in Atmospheric Sciences, 2017, 34, 497-508.	4.3	12
68	Modeling the late Pliocene global monsoon response to individual boundary conditions. Climate Dynamics, 2019, 53, 4871-4886.	3.8	12
69	Unstable relationship between the Pacific Decadal Oscillation and eastern China summer precipitation: Insights from the Medieval Climate Anomaly and Little Ice Age. Holocene, 2020, 30, 799-809.	1.7	12
70	Mechanisms for Spatially Inhomogeneous Changes in East Asian Summer Monsoon Precipitation during the Mid-Holocene. Journal of Climate, 2020, 33, 2945-2965.	3.2	12
71	Last glacial maximum permafrost in China from CMIP5 simulations. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 447, 12-21.	2.3	11
72	Sources of moisture for different intensities of summer rainfall over the Chinese Loess Plateau during 1979–2009. International Journal of Climatology, 2018, 38, e1280.	3 . 5	11

#	Article	IF	CITATIONS
73	Evaluation of East Asian Summer Climate Prediction from the CESM Large-Ensemble Initialized Decadal Prediction Project. Journal of Meteorological Research, 2020, 34, 252-263.	2.4	11
74	Lagrangian simulations of moisture sources for Chinese Xinjiang precipitation during 1979–2018. International Journal of Climatology, 2021, 41, E216.	3.5	11
75	Weakening and eastward shift of the tropical Pacific Walker circulation during the Last Glacial Maximum. Boreas, 2020, 49, 200-210.	2.4	10
76	Köppen Climate Zones in China Over the Last 21,000ÂYears. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034310.	3.3	10
77	Impact of vegetation feedback on the mid-Pliocene warm climate. Advances in Atmospheric Sciences, 2014, 31, 1407-1416.	4.3	9
78	Midâ∈Holocene permafrost: Results from CMIP5 simulations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 221-240.	3.3	9
79	Influence of October Eurasian snow on winter temperature over Northeast China. Advances in Atmospheric Sciences, 2017, 34, 116-126.	4.3	9
80	Assessment of CMIP6 model performance for temperature and precipitation in Xinjiang, China. Atmospheric and Oceanic Science Letters, 2022, 15, 100128.	1.3	9
81	Investigating dynamic mechanisms for synchronous variation of East Asian and Australian summer monsoons over the last millennium. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 480, 70-79.	2.3	8
82	Trends in day-to-day variability of surface air temperature in China during 1961–2012. Atmospheric and Oceanic Science Letters, 2017, 10, 122-129.	1.3	8
83	Effects of the uplifts of the main and marginal Tibetan Plateau on the Asian climate under modern and ~30 Ma boundary conditions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 510, 15-25.	2.3	8
84	Intensification of the Atlantic Multidecadal Variability Since 1870: Implications and Possible Causes. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030977.	3.3	8
85	Moisture sources of summer precipitation over eastern China during 1979–2009: A Lagrangian transient simulation. International Journal of Climatology, 2021, 41, 1162-1178.	3.5	8
86	Understanding the cold biases of CMIP5 models over China with weather regimes. Advances in Climate Change Research, 2021, 12, 373-373.	5.1	8
87	Paleoclimate modelling at the Institute of Atmospheric Physics, Chinese Academy of Sciences. Advances in Atmospheric Sciences, 2006, 23, 1040-1049.	4.3	7
88	Strengthening of the East Asian winter monsoon during the mid-Holocene. Holocene, 2018, 28, 1443-1451.	1.7	7
89	Some Illustrations of Large Tectonically Driven Climate Changes in Earth History. Tectonics, 2019, 38, 4454-4464.	2.8	7
90	Seasonality in the Response of East Asian Westerly Jet to the Midâ€Holocene Forcing. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033003.	3.3	7

#	Article	IF	CITATIONS
91	Teleconnections between the Atlantic Multidecadal Oscillation and eastern China summer precipitation during the Medieval Climate Anomaly and Little Ice Age. Holocene, 2020, 30, 1694-1705.	1.7	7
92	A multi-model analysis of â€~Little Ice Age' climate over China. Holocene, 2019, 29, 592-605.	1.7	7
93	Mid-Holocene drylands: A multi-model analysis using Paleoclimate Modelling Intercomparison Project Phase III (PMIP3) simulations. Holocene, 2019, 29, 1425-1438.	1.7	6
94	Global Warming Increases the Incidence of Haze Days in China. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6180-6190.	3.3	6
95	Projected potential vegetation change in China under the SRES A2 and B2 scenarios. Advances in Atmospheric Sciences, 2008, 25, 126-138.	4.3	5
96	Weakened amplitude and delayed phase of the future temperature seasonal cycle over China during the twentyâ€first century. International Journal of Climatology, 2022, 42, 7133-7145.	3.5	5
97	Last Glacial Maximum and Midâ€Holocene Thermal Growing Season Simulations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,466.	3.3	4
98	Metric-Dependent Tendency of Tropical Belt Width Changes during the Last Glacial Maximum. Journal of Climate, 2018, 31, 8527-8540.	3.2	4
99	Vegetation and Ocean Feedbacks on the Asian Climate Response to the Uplift of the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6327-6341.	3.3	4
100	Time-varying responses of dryland aridity to external forcings over the last 21 ka. Quaternary Science Reviews, 2021, 262, 106989.	3.0	4
101	Index―and modelâ€dependent projections of East Asian summer monsoon in Coupled Model Intercomparison Project Phase 6 simulations. International Journal of Climatology, 2022, 42, 2208-2224.	3.5	4
102	Unprecedented North American snowstorm and East Asian cold wave in January 2016: Critical role of the Arctic atmospheric circulation. Atmospheric Science Letters, 2021, 22, e1056.	1.9	4
103	Impact of Stratospheric Aerosol Injection Geoengineering on the Summer Climate over East Asia. Journal of Geophysical Research D: Atmospheres, 0, , .	3.3	4
104	Synergistic Impacts of the Atlantic and Pacific Oceans on Interdecadal Variations of Summer Rainfall in Northeast Asia. Journal of Meteorological Research, 2021, 35, 844-856.	2.4	4
105	Brief review of some CLIVAR-related studies in China. Advances in Atmospheric Sciences, 2007, 24, 1037-1048.	4.3	3
106	Interdecadal variations of cold air activities in Northeast China during springtime. Journal of Meteorological Research, 2016, 30, 645-661.	2.4	3
107	Holocene precipitation changes in northeastern China from CCSM3 transient climate simulations. Holocene, 2021, 31, 66-72.	1.7	3
108	Mechanisms of Reduced Midâ€Holocene Precipitation in Arid Central Asia as Simulated by PMIP3/4 Models. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3

#	Article	IF	Citations
109	Transient climate simulations of the Holocene (version 1) $\hat{a} \in$ experimental design and boundary conditions. Geoscientific Model Development, 2022, 15, 4469-4487.	3.6	3
110	Midâ€Holocene frozen ground in China from <scp>PMIP</scp> 3 simulations. Boreas, 2018, 47, 498-509.	2.4	2
111	Tibetan Plateau Made Central Asian Drylands Move Northward, Concentrate in Narrow Latitudinal Bands, and Increase in Intensity During the Cenozoic. Geophysical Research Letters, 2022, 49, .	4.0	2
112	How skillful was the projected temperature over China during 2002–2018?. Science Bulletin, 2022, , .	9.0	2
113	Enhanced Interannual Variability in Temperature during the Last Glacial Maximum. Journal of Climate, 2022, 35, 5933-5950.	3.2	2
114	Atmospheric teleconnection associated with the Atlantic multidecadal variability in summer: assessment of the CESM1 model. Climate Dynamics, 2023, 60, 1043-1060.	3.8	2
115	Impact of stratospheric aerosol intervention geoengineering on surface air temperature in China: a surface energy budget perspective. Atmospheric Chemistry and Physics, 2022, 22, 7667-7680.	4.9	2
116	The Weakening and Eastward Movement of ENSO Impacts during the Last Glacial Maximum. Journal of Climate, 2020, 33, 5507-5526.	3.2	1
117	Ozone-aerosol and land use reversed temperature increase over some northern mid-latitude regions between the 20th century and the Little Ice Age based on the CESM-LME. Holocene, 2022, 32, 1251-1259.	1.7	1
118	Numerical simulation on the impact of global mountain uplift on the subtropical arid climate. Chinese Science Bulletin, 2018, 63, 1142-1153.	0.7	1
119	Modulation of orbitally forced ENSO variation by Tibetan Plateau topography. Palaeogeography, Palaeoecology, 2020, 556, 109874.	2.3	0
120	A perspective on climate sensitivity. Solid Earth Sciences, 2020, 5, 254-257.	1.7	0
121	How hot will the greenhouse world be? — A brief review of equilibrium climate sensitivity. Chinese Science Bulletin, 2016, 61, 691-694.	0.7	O