List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7541960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrodeposition of Inorganic/Organic Hybrid Thin Films. Advanced Functional Materials, 2009, 19, 17-43.	7.8	315
2	Room-Temperature Synthesis of Porous Nanoparticulate TiO2 Films for Flexible Dye-Sensitized Solar Cells. Advanced Functional Materials, 2006, 16, 1228-1234.	7.8	236
3	Electrochemical Self-Assembly of Nanoporous ZnO/Eosin Y Thin Films and Their Sensitized Photoelectrochemical Performance. Advanced Materials, 2000, 12, 1214-1217.	11.1	220
4	Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells. Solid State Ionics, 2002, 151, 19-27.	1.3	220
5	Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths. Thin Solid Films, 2004, 451-452, 166-169.	0.8	217
6	Low-Temperature Fabrication of Efficient Porous Titania Photoelectrodes by Hydrothermal Crystallization at the Solid/Gas Interface. Advanced Materials, 2003, 15, 814-817.	11.1	212
7	Self-Assembly of Zinc Oxide Thin Films Modified with Tetrasulfonated Metallophthalocyanines by One-Step Electrodeposition. Chemistry of Materials, 1999, 11, 2657-2667.	3.2	205
8	Electron Transport and Back Reaction in Nanocrystalline TiO2 Films Prepared by Hydrothermal Crystallization. Journal of Physical Chemistry B, 2004, 108, 2227-2235.	1.2	190
9	Electrochemical Self-Assembly of Dye-Modified Zinc Oxide Thin Films. Advanced Materials, 2000, 12, 1219-1222.	11.1	159
10	Improved photoelectrochemical performance of electrodeposited ZnO/EosinY hybrid thin films by dye re-adsorption. Chemical Communications, 2004, , 400-401.	2.2	141
11	Selective electroacatalysis for CO2 reduction in the aqueous phase using cobalt phthalocyanine/poly-4-vinylpyridine modified electrodes. Journal of Electroanalytical Chemistry, 1995, 385, 209-225.	1.9	132
12	Factors affecting selective electrocatalytic co2 reduction with cobalt phthalocyanine incorporated in a polyvinylpyridine membrane coated on a graphite electrode. Journal of Electroanalytical Chemistry, 1996, 412, 125-132.	1.9	118
13	Cathodic Electrodeposition of ZnO/Eosin Y Hybrid Thin Films from Oxygen-Saturated Aqueous Solution of ZnCl[sub 2] and Eosin Y. Journal of the Electrochemical Society, 2003, 150, C608.	1.3	118
14	Hydrothermal preparation of porous nano-crystalline TiO2 electrodes for flexible solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 159-166.	2.0	112
15	Novel thiophene-conjugated indolinedyes for zinc oxide solar cells. New Journal of Chemistry, 2009, 33, 93-101.	1.4	111
16	Dye Sensitization of ZnO by Unsymmetrical Squaraine Dyes Suppressing Aggregation. Chemistry Letters, 2006, 35, 666-667.	0.7	105
17	Mg-doped TiO ₂ nanorods improving open-circuit voltages of ammonium lead halide perovskite solar cells. RSC Advances, 2014, 4, 9652-9655.	1.7	100
18	Cathodic Electrodeposition of ZnO/EosinY Hybrid Thin Films from Dye Added Zinc Nitrate Bath and Their Photoelectrochemical Characterizations, Electrochemistry, 2002, 70, 470-487	0.6	85

#	Article	IF	CITATIONS
19	Electron Transport and Back Reaction in Electrochemically Self-Assembled Nanoporous ZnO/Dye Hybrid Films. Journal of Physical Chemistry B, 2004, 108, 8364-8370.	1.2	85
20	Flexible Ultraviolet Photodetectors Based on One-Dimensional Gallium-Doped Zinc Oxide Nanostructures. ACS Applied Electronic Materials, 2020, 2, 3522-3529.	2.0	82
21	Electrocatalytic reduction of CO2in water by [Re(bpy)(CO)3Br] and [Re(terpy)(CO)3Br] complexes incorporated into coated nafion membrane (bpy = 2,2′-bipyridine; terpy = 2,2′;6′,2″-terpyridine). Journ the Chemical Society Chemical Communications, 1993, , 631-633.	al206	77
22	Photoelectrochemical sensitisation of ZnO–tetrasulfophthalocyaninatozinc composites prepared by electrochemical self-assembly. Journal of Electroanalytical Chemistry, 2000, 481, 42-51.	1.9	74
23	The use of indoline dyes in a zinc oxide dye-sensitized solar cell. Dyes and Pigments, 2009, 80, 233-238.	2.0	68
24	Application of near-infrared absorbing heptamethine cyanine dyes as sensitizers for zinc oxide solar cell. Synthetic Metals, 2005, 148, 147-153.	2.1	64
25	Synthesis of a novel heptamethine–cyanine dye for use in near-infrared active dye-sensitized solar cells with porous zinc oxide prepared at low temperature. Energy and Environmental Science, 2011, 4, 2186.	15.6	64
26	Low Temperature Synthesis of Porous Nanocrystalline TiO2Thick Film for Dye-Sensitized Solar Cells by Hydrothermal Crystallization. Chemistry Letters, 2002, 31, 874-875.	0.7	63
27	Mechanistic Study of Chemical Deposition of ZnS Thin Films from Aqueous Solutions Containing Zinc Acetate and Thioacetamide by Comparison with Homogeneous Precipitation. Journal of Physical Chemistry B, 2003, 107, 387-397.	1.2	63
28	Organic dyes containing fluorene-substituted indoline core for zinc oxide dye-sensitized solar cell. RSC Advances, 2012, 2, 2721.	1.7	62
29	Design of NIR-Absorbing Simple Asymmetric Squaraine Dyes Carrying Indoline Moieties for Use in Dye-Sensitized Solar Cells with Pt-Free Electrodes. Organic Letters, 2012, 14, 1246-1249.	2.4	58
30	Electrocatalytic CO2 reduction by cobalt octabutoxyphthalocyanine coated on graphite electrode. Journal of Molecular Catalysis A, 1996, 112, 55-61.	4.8	57
31	Electrochemical Growth of Epitaxial Eosin/ZnO Hybrid Films. Journal of Physical Chemistry B, 2003, 107, 10077-10082.	1.2	57
32	Electrochemical reduction of substituted cobalt phthalocyanines adsorbed on graphite. Journal of Electroanalytical Chemistry, 1998, 441, 139-146.	1.9	56
33	Microwave synthesis of size-controllable SnO2 nanocrystals for dye-sensitized solar cells. New Journal of Chemistry, 2014, 38, 598.	1.4	53
34	A Novel Approach for CdS Thin-Film Deposition:  Electrochemically Induced Atom-by-Atom Growth of CdS Thin Films from Acidic Chemical Bath. Journal of Physical Chemistry B, 1998, 102, 9677-9686.	1.2	52
35	Electrocatalytic reduction of carbon dioxide in aqueous medium by bis(2,2′: 6′,2″-terpyridine)cobalt(II) complex incorporated into a coated polymer membrane. Journal of Electroanalytical Chemistry, 1993, 344, 355-362.	1.9	51
36	Photoelectrochemical properties of ZnO/tetrasulfophthalocyanine hybrid thin films prepared by electrochemical self-assembly. Physical Chemistry Chemical Physics, 2001, 3, 3387-3392.	1.3	51

#	Article	IF	CITATIONS
37	Mechanistic Study of the Electrodeposition of Nanoporous Self-Assembled ZnO/Eosin Y Hybrid Thin Films:  Effect of Eosin Concentration. Langmuir, 2006, 22, 10545-10553.	1.6	51
38	Highly efficient new indoline dye having strong electron-withdrawing group for zinc oxide dye-sensitized solar cell. Tetrahedron, 2011, 67, 6289-6293.	1.0	50
39	Aggregation of indoline dyes as sensitizers for ZnO solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 1-7.	2.0	49
40	One-step electrodeposition of ZnO/eosin Y hybrid films from a hydrogen peroxide oxygen precursor. Journal of Electroanalytical Chemistry, 2002, 534, 55-64.	1.9	48
41	Electrodeposition of ZnO/Dye Hybrid Thin Films for Dye-Sensitized Solar Cells. Electrochemistry, 2008, 76, 109-117.	0.6	48
42	Self Assembled Growth of Nano Particulate Porous ZnO Thin Film Modified by 2,9,16,23-Tetrasulfophthalocyanatozinc(II) by One-Step Electrodeposition. Chemistry Letters, 1998, 27, 599-600.	0.7	44
43	Cathodic Electrodeposition of TiO2Thin Films for Dye-Sensitized Photoelectrochemical Applications. Chemistry Letters, 2001, 30, 78-79.	0.7	44
44	Substituent effects in a double rhodanine indoline dye on performance of zinc oxide dye-sensitized solar cell. Dyes and Pigments, 2010, 86, 143-148.	2.0	40
45	Comparison of performance between benzoindoline and indoline dyes in zinc oxide dye-sensitized solar cell. Dyes and Pigments, 2011, 91, 145-152.	2.0	37
46	Formation of Highly Crystallized ?-PbO Thin Films by Cathodic Electrodeposition of Pb and Its Rapid Oxidation in Air. Advanced Functional Materials, 2005, 15, 297-301.	7.8	35
47	Phthalocyanines and related macrocycles for multi-electron transfer in catalysis, photochemistry and photoelectrochemistry. Polymers for Advanced Technologies, 1995, 6, 118-130.	1.6	33
48	One-step electrochemical synthesis of ZnO/Ru(dcbpy)2(NCS)2 hybrid thin films and their photoelectrochemical properties. Electrochimica Acta, 2003, 48, 3071-3078.	2.6	33
49	Design and Synthesis of Near-infrared-active Heptamethine–Cyanine Dyes to Suppress Aggregation in a Dye-sensitized Porous Zinc Oxide Solar Cell. Chemistry Letters, 2008, 37, 176-177.	0.7	33
50	Highly efficient substituted triple rhodanine indoline dyes in zinc oxide dye-sensitized solar cell. Tetrahedron, 2010, 66, 7405-7410.	1.0	33
51	Application of 9-substituted 3,4-perylenedicarboxylic anhydrides as sensitizers for zinc oxide solar cell. Dyes and Pigments, 2007, 72, 303-307.	2.0	31
52	Flexible zinc oxide solar cells sensitized by styryl dyes. Dyes and Pigments, 2008, 77, 59-69.	2.0	31
53	Self-assembly of ZnO/riboflavin 5′-phosphate thin films by one-step electrodeposition and its characterization. Thin Solid Films, 2001, 397, 63-69.	0.8	30
54	Application of semisquaric acids as sensitizers for zinc oxide solar cell. Dyes and Pigments, 2006, 70, 48-53.	2.0	30

#	Article	IF	CITATIONS
55	Improvement of Light Harvesting by Addition of a Long-Wavelength Absorber in Dye-Sensitized Solar Cells Based on ZnO and Indoline Dyes. Journal of Physical Chemistry C, 2015, 119, 1298-1311.	1.5	29
56	Electrochemical Self-Assembly of Nanostructured CuSCN/Rhodamine B Hybrid Thin Film and Its Dye-Sensitized Photocathodic Properties. Journal of Physical Chemistry C, 2014, 118, 16581-16590.	1.5	28
57	Interfacial Engineering in Solution Processing of Silicon-Based Hybrid Multilayer for High Performance Thin Film Encapsulation. ACS Applied Materials & Interfaces, 2019, 11, 43425-43432.	4.0	28
58	Electrochemical Self-Assembly of ZnO/SO[sub 3]EtPTCDI Hybrid Photoelectrodes. Journal of the Electrochemical Society, 2004, 151, C62.	1.3	27
59	Structural and compositional analyses on indium sulfide thin films deposited in aqueous chemical bath containing indium chloride and thioacetamide. Thin Solid Films, 2003, 431-432, 354-358.	0.8	26
60	Photoelectrochemical characterisation and optimisation of electrodeposited ZnO thin films sensitised by porphyrins and phthalocyanines. Physical Chemistry Chemical Physics, 2006, 8, 3867-3875.	1.3	26
61	Spectroelectrochemical studies on redox reactions of eosin Y and its polymerization with Zn2+ ions. Journal of Electroanalytical Chemistry, 2011, 662, 384-395.	1.9	25
62	Capacitance and Field-Driven Electron Transport in Electrochemically Self-Assembled Nanoporous ZnO/Dye Hybrid Films. Journal of Physical Chemistry B, 2005, 109, 12560-12566.	1.2	24
63	Metalâ€Free Hydrogenâ€Bonded Polymers Mimic Noble Metal Electrocatalysts. Advanced Materials, 2020, 32, e1902177.	11.1	24
64	Design of a hierarchical structure of ZnO by electrochemistry for ZnOâ€based dyeâ€sensitized solar cells. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2252-2257.	0.8	23
65	Size-controlled synthesis of anisotropic TiO2 single nanocrystals using microwave irradiation and their application for dye-sensitized solar cells. Dalton Transactions, 2013, 42, 3295.	1.6	23
66	Solution processing of alternating PDMS/SiOx multilayer for encapsulation of organic light emitting diodes. Organic Electronics, 2019, 64, 176-180.	1.4	23
67	Effect of anchoring groups on electrochemical self-assembly of ZnO/xanthene dye hybrid thin films. Physical Chemistry Chemical Physics, 2010, 12, 10494.	1.3	22
68	Cathodic electrodeposition of p-CuSCN nanorod and its dye-sensitized photocathodic property. Physics Procedia, 2011, 14, 12-24.	1.2	22
69	Using the Alkynyl-Substituted Rhenium(I) Complex (4,4′-Bisphenyl-Ethynyl-2,2′-Bipyridyl)Re(CO)3Cl as Catalyst for CO2 Reduction—Synthesis, Characterization, and Application. Electrocatalysis, 2015, 6, 185-197.	1.5	22
70	Microstructural Observation of Photoelectrochemically Tailored Nano-Honeycomb TiO ₂ . Electrochemistry, 1999, 67, 1234-1236.	0.6	22
71	Highly Porous Electrodeposited Zinc Oxide Films Functionalized for Red/Green Luminescence. Electrochemical and Solid-State Letters, 2006, 9, H16-H18.	2.2	21
72	Variation of the morphology of electrodeposited copper thiocyanate films. Thin Solid Films, 2008, 516, 7120-7124.	0.8	21

#	Article	IF	CITATIONS
73	3-Aryl-4-hydroxycyclobut-3-ene-1,2-diones as sensitizers for TiO2 solar cell. Dyes and Pigments, 2003, 58, 219-226.	2.0	18
74	Dependence of the photoelectrochemical performance of sensitised ZnO on the crystalline orientation in electrodeposited ZnO thin films. Physical Chemistry Chemical Physics, 2007, 9, 1843.	1.3	18
75	Highly porous TiO2 films from anodically deposited titanate hybrids and their photoelectrochemical and photocatalytic activity. Microporous and Mesoporous Materials, 2008, 111, 55-61.	2.2	18
76	Microwave-assisted Hydrothermal Synthesis of Structure-controlled ZnO Nanocrystals and Their Properties in Dye-sensitized Solar Cells. Electrochemistry, 2017, 85, 253-261.	0.6	18
77	Atom-by-atom growth of cadmium sulfide thin films by electroreduction of aqueous Cd2+–SCNâ^' complex. Journal of Electroanalytical Chemistry, 1999, 473, 209-216.	1.9	17
78	Efficient Sensitization of Mesoporous Electrodeposited Zinc Oxide by cis-Bis(isothiocyanato)bis(2,2[sup Ê1]-bipyridyl-4,4[sup Ê1]-dicarboxylato)-Ruthenium(II). Journal of the Electrochemical Society, 2006, 153, A699.	1.3	17
79	Importance of fluorescence lifetimes for efficient indoline dyes in dye-sensitized solar cells. RSC Advances, 2015, 5, 57721-57724.	1.7	17
80	Application of MIS-CELIV technique to measure hole mobility of hole-transport material for organic light-emitting diodes. AIP Advances, 2018, 8, 105001.	0.6	17
81	Hybrid thin films of ZnO with porphyrins and phthalocyanines prepared by one-step electrodeposition. Journal of Porphyrins and Phthalocyanines, 2004, 08, 1366-1375.	0.4	15
82	Evolution of a skeleton structured TiO2 surface consisting of grain boundaries. Journal of Electroanalytical Chemistry, 1999, 473, 204-208.	1.9	14
83	Electrodeposition of TiO2 Thin Film by Anodic Formation of Titanate/Benzoquinone Hybrid. Electrochemical and Solid-State Letters, 2005, 8, C69-C71.	2.2	14
84	Ring-fluorinated fluoresceins as an organic photosensitizer for dye-sensitized solar cells using nanocrystalline zinc oxide. Journal of Fluorine Chemistry, 2006, 127, 257-262.	0.9	14
85	Color-sensitive photoconductivity of nanostructured ZnO/dye hybrid films prepared by one-step electrodeposition. Thin Solid Films, 2006, 511-512, 354-357.	0.8	13
86	The Effect of Pre-treatments of F-Doped SnO2 Substrates for Cathodic Nucleation of ZnO Crystals in Aqueous ZnCl2 Solution with Dissolved O2. Electrochemistry, 2011, 79, 146-155.	0.6	13
87	N-(2-Alkoxyphenyl)-substituted double rhodanine indoline dyes for zinc oxide dye-sensitized solar cell. Tetrahedron, 2012, 68, 4286-4291.	1.0	13
88	Influence of indoline dye and coadsorbate molecules on photovoltaic performance and recombination in dye-sensitized solar cells based on electrodeposited ZnO. Journal of Electroanalytical Chemistry, 2013, 709, 10-18.	1.9	13
89	Application of novel N-(p-phenylene)-dicyanovinylidene double rhodanine indoline dye for zinc oxide dye-sensitized solar cell. Dyes and Pigments, 2013, 96, 614-618.	2.0	13
90	Vacuum Ultraviolet Photochemical Sol-Gel Processing of Zn, Sn, Zn-Sn Oxide Thin Films for Encapsulation of Organic Light Emitting Diodes. Journal of the Electrochemical Society, 2019, 166, B3176-B3183.	1.3	13

#	Article	IF	CITATIONS
91	Principles of solar energy storage. Energy Storage, 2020, 2, e96.	2.3	13
92	Phonon-assisted anti-Stokes luminescence of tricarbocyanine near-infrared dye. Chemical Physics Letters, 2020, 738, 136905.	1.2	13
93	Hybrid layers of ZnO/lanthanide complexes with high visible luminescences. Journal of Materials Chemistry, 2006, 16, 4529.	6.7	12
94	Substrateâ€Oriented Nanorod Scaffolds in Polymer–Fullerene Bulk Heterojunction Solar Cells. ChemPhysChem, 2014, 15, 1070-1075.	1.0	12
95	Performance of new single rhodanine indoline dyes in zinc oxide dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2014, 128, 313-319.	3.0	12
96	Separation of mono-dispersed CH ₃ NH ₃ PbBr ₃ perovskite quantum dots <i>via</i> dissolution of nanocrystals. CrystEngComm, 2018, 20, 7053-7057.	1.3	12
97	Vanadium Redox Flow Batteries Fabricated by 3D Printing and Employing Recycled Vanadium Collected from Ammonia Slag. Journal of the Electrochemical Society, 2019, 166, B3125-B3130.	1.3	12
98	Preparation of Hierarchic Porous Films of α-MnO ₂ Nanoparticles by Using the Breath Figure Technique and Application for Hybrid Capacitor Electrodes. ACS Omega, 2019, 4, 3827-3831.	1.6	12
99	Electrochemical CO2 reduction catalysed by cobalt octacyanophthalocyanine and its mechanism. Journal of Porphyrins and Phthalocyanines, 1997, 1, 315-321.	0.4	12
100	Wall thickness and charge transport properties of nano-honeycomb TiO2 structures prepared by photoetching. Electrochimica Acta, 2007, 52, 4325-4333.	2.6	11
101	Photoluminescence from Electrodeposited Zinc Oxide Films Modified with Eu Ions. Japanese Journal of Applied Physics, 2008, 47, 625-628.	0.8	11
102	Effects of alkylamine chain length on perovskite nanocrystals after washing and perovskite light-emitting diodes. Japanese Journal of Applied Physics, 2020, 59, SDDC04.	0.8	11
103	Time- and Frequency-resolved Photoelectrochemical Investigations on Nano-honeycomb TiO ₂ Electrodes. Electrochemistry, 2002, 70, 453-456.	0.6	11
104	La1â^'xSrxMnO3–YSZ composite film electrodes prepared by metal-organic decomposition for solid oxide fuel cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 49, 239-242.	1.7	10
105	Control of Nanostructure and Crystallographic Orientation in Electrodeposited ZnO Thin Films via Structure Directing Agents. Journal of the Electrochemical Society, 2014, 161, D195-D201.	1.3	10
106	Microwave-assisted hydrothermal synthesis of ZnO and Zn-terephthalate hybrid nanoparticles employing benzene dicarboxylic acids. Microsystem Technologies, 2018, 24, 699-708.	1.2	10
107	Single-Component Organic Solar Cells Based on Intramolecular Charge Transfer Photoabsorption. Materials, 2021, 14, 1200.	1.3	10
108	Influence of Mg-doping on the characteristics of ZnO photoanodes in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2021, 23, 8393-8402.	1.3	10

#	Article	IF	CITATIONS
109	Emergence and control of photonic band structure in stacked OLED microcavities. Nature Communications, 2021, 12, 6111.	5.8	10
110	Electrochromic redox reactions of vapour-deposited thin films of tetrapyridotetraazaporphyrinatozinc(II). Journal of Porphyrins and Phthalocyanines, 2000, 04, 112-122.	0.4	9
111	Multiple Fabrications of Crystalline CdS Thin Films from a Single Bath by EICD in Acidic Aqueous Solution of Cd2+and Thiourea Complex. Chemistry Letters, 2001, 30, 864-865.	0.7	8
112	Cathodic electrodeposition of CuSCN thin films. Transactions of the Materials Research Society of Japan, 2008, 33, 1325-1328.	0.2	7
113	Aggregation behavior of differently substituted Ru(II)-complex dyes as sensitizers for electrodeposited ZnO solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 242, 67-71.	2.0	7
114	Electrochemically assembled planar hybrid poly(3-methylthiophene)/ZnO nanostructured composites. Electrochimica Acta, 2012, 81, 83-89.	2.6	7
115	Electrochemical self-assembly of CuSCN-DAST hybrid thin films. Monatshefte Für Chemie, 2017, 148, 845-854.	0.9	7
116	Various Ionic Crystals from the Combination of 1,3-Bis(dicyanomethylidene)indan Anion and ï€-Electronic Cations. Crystal Growth and Design, 2019, 19, 5811-5818.	1.4	7
117	Electrochemically self-assembled mesoporous dye-modified zinc oxide thin films. Studies in Surface Science and Catalysis, 2005, , 315-320.	1.5	6
118	Selective hybridization of organic dyes with CuSCN during its electrochemical growth. Microsystem Technologies, 2018, 24, 715-723.	1.2	6
119	Electrodeposition of Zn-Co-Terephthalate MOF and Its Conversion to Co-Doped ZnO Thin Films. ECS Journal of Solid State Science and Technology, 2021, 10, 057002.	0.9	6
120	Synthesis of Q-particulate CdS Thin Films by Using Surface Adsorbent in Electrochemically Induced Chemical Deposition (EICD) Technique. Electrochemistry, 1999, 67, 1168-1171.	0.6	6
121	Epitaxial electrodeposition of ZnO thin film on GaN(0001) bulk single crystal. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2376-2381.	0.8	5
122	Photochemical Conversion of Ethanolamine-Zn ²⁺ Complex Gel under Vacuum Ultraviolet Irradiation Associated with Color-Tunable Photoluminescence. Journal of Physical Chemistry C, 2021, 125, 5417-5424.	1.5	5
123	One-step electrodeposition of CdS/ZnS bilayer from an aqueous mixture of Cd ²⁺ and Zn ²⁺ . Journal of Materials Research, 1998, 13, 917-921.	1.2	4
124	Evaluation of CO2 Reduction Effect of Dye-sensitized Solar Cell by LCA. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2007, 86, 978-986.	0.2	4
125	Influence of the supporting salt concentration on the electrodeposition of ZnO/eosin Y hybrid films. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2388-2391.	0.8	4
126	Excitation Processes of Photoluminescence and Origin of Absorption Peak Shift in ZnO Porous Films Modified with Eu Ions. Japanese Journal of Applied Physics, 2010, 49, 031106.	0.8	4

#	Article	IF	CITATIONS
127	Development of Electrodeposition System Employing 8 Rotating Disc Electrodes for Highly Reproducible Synthesis of Zinc Oxide Thin Films. Electrochemistry, 2012, 80, 891-897.	0.6	4
128	Survey of co-adsorbent for DN350 in zinc oxide dye-sensitized solar cell. Dyes and Pigments, 2013, 99, 829-832.	2.0	4
129	ZnO/TiO2 core–shell photoelectrodes for dye-sensitized solar cells by screen printing and room temperature ALD. Microsystem Technologies, 2018, 24, 647-654.	1.2	4
130	Microwave-Assisted Hydrothermal Synthesis of Co-Doped ZnO Nanoparticles for Water Oxidation Electrocatalysis. ECS Transactions, 2018, 88, 369-380.	0.3	4
131	Extraction of Vanadium from Ammonia Slag under Near-Atmospheric Conditions. Metals, 2018, 8, 414.	1.0	4
132	Electrochemically self-assembled ZnO/dye electrodes: preparation and time-resolved photoelectrochemical measurements. , 2002, 4807, 113.		3
133	Cathodic electrodeposition of ZnO and CuSCN thin films in the presence of glutathione. Transactions of the Materials Research Society of Japan, 2009, 34, 283-286.	0.2	3
134	Fabrication of Carbon Nanotube/Zinc Oxide Composite Films by Electrodeposition. Japanese Journal of Applied Physics, 2011, 50, 085504.	0.8	3
135	Electrodeposition of Zn-Terephthalate Metal-Organic Framework Thin Films. ECS Transactions, 2018, 88, 343-350.	0.3	3
136	Novel Organic CT Salts of 1,3-Bis(dicyanomethylidene)indan Anion and Viologen Cations with Different Linear Alkyl Chain Lengths. ECS Transactions, 2018, 88, 301-311.	0.3	3
137	Switching of Dye Loading Mechanism in Electrochemical Self-Assembly of CuSCN/DAS Hybrid Thin Films. ECS Transactions, 2018, 88, 313-322.	0.3	3
138	Influence of Crystal Facets (102) or (100) on Photoelectrochemical Kinetics of ZnO Nanocrystals in Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2019, 166, B3290-B3294.	1.3	3
139	Concerted Photoluminescence of Electrochemically Self-Assembled CuSCN/Stilbazolium Dye Hybrid Thin Films. ACS Omega, 2019, 4, 4056-4062.	1.6	3
140	Smart energy systems. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2019, 22, 452-456.	0.3	3
141	Field Electron Emission from Carbon Nanotube/ZnO Composite Films Prepared by Electrodeposition. Japanese Journal of Applied Physics, 2013, 52, 091801.	0.8	2
142	Organic Microboxes Prepared by Self-assembly of a Charge-transfer Dye. Chemistry Letters, 2017, 46, 557-559.	0.7	2
143	Size control of CH3NH3PbBr3 perovskite cuboid fine crystals synthesized by ligand-free reprecipitation method. Microsystem Technologies, 2018, 24, 619-623.	1.2	2
144	Development of non-platinum oxygen reduction catalysts prepared from metal-organic framework using 4,4′-bipyridine as a bridging ligand. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 228, 190-197.	1.7	2

#	Article	IF	CITATIONS
145	Photoluminescent Property of Electrochemically Self-Assembled CuSCN/Dye Hybrid Thin Films. ECS Transactions, 2018, 88, 323-333.	0.3	2
146	Novel indoline dye tetrabutylammonium carboxylates attached with a methyl group on the cyclopentane ring for dye-sensitized solar cells. Tetrahedron, 2018, 74, 5867-5878.	1.0	2
147	High Voltage Flexible ZnO Solar Cells Employing Bulky Organic Dye and [Co(bpy) ₃] ^{2+/3+} Redox Electrolyte. Journal of the Electrochemical Society, 2018, 165, B3194-B3200.	1.3	2
148	Photoconductive Properties of Dibenzotetrathiafulvalene-Tetracyanoquinodimethane (DBTTF-TCNQ) Nanorods Prepared by the Reprecipitation Method. Journal of Nanoscience and Nanotechnology, 2019, 19, 4599-4602.	0.9	2
149	Crystal structure characterization of some π-conjugated ionic crystals toward electronic applications. Molecular Crystals and Liquid Crystals, 2020, 704, 1-9.	0.4	2
150	Electrochemical Self-Assembly of Nanoporous ZnO/Eosin Y Thin Films and Their Sensitized Photoelectrochemical Performance. , 2000, 12, 1214.		2
151	Electrochemical Self-Assembly of CuSCN/4-Cyano-4'-(N'-Methyl)Stilbazolium Hybrid Thin Films. ECS Meeting Abstracts, 2020, MA2020-01, 2856-2856.	0.0	2
152	Nanoparticulate Dye-Semiconductor Hybrid Materials Formed by Electrochemical Self-Assembly as Electrodes in Photoelectrochemical Cells. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 518-530.	0.7	1
153	A Dye-sensitized Solar Cell Using an Anthraquinone Bearing Anion Recognition Moieties. Chemistry Letters, 2016, 45, 881-883.	0.7	1
154	Fabrication of Hybridized Microparticles Composed of Mesoporous Manganese Dioxide and Fullerene C ₆₀ Nanocrystals. Chemistry Letters, 2018, 47, 347-349.	0.7	1
155	Solution Processed Alternating Organic/Inorganic Multilayer for OLED Encapsulation. ECS Transactions, 2018, 88, 121-128.	0.3	1
156	Electrochemical Impedance Spectroscopy Analysis on Dye-sensitized Solar Cells Employing (102) and (100) Dominant ZnO Nanocrystals. ECS Transactions, 2018, 88, 289-299.	0.3	1
157	Vanadium Redox Flow Batteries Fabricated by 3D Printing and Employing Recycled Vanadium Collected from Ammonia Slag. ECS Transactions, 2018, 88, 269-278.	0.3	1
158	Vacuum Ultraviolet-Assisted Sol-Gel Processing of Zn, Sn, Zn-Sn Oxide Thin Films for OLED Encapsulation. ECS Transactions, 2018, 88, 399-408.	0.3	1
159	Switching of Dye Loading Mechanism in Electrochemical Self-Assembly of CuSCN/4-(N,N-dimethylamino)-4â€2- (Nâ€2-methyl)Stilbazolium Hybrid Thin Films. Journal of the Electrochemical Society, 2019, 166, B3096-B3102.	1.3	1
160	Electrochromism of Mesoporous Zinc Oxide/Carboxylated Viologen Electrodes. ECS Journal of Solid State Science and Technology, 2021, 10, 067002.	0.9	1
161	Electrochemical Self-Assembly of Dye-Modified Zinc Oxide Thin Films. , 2000, 12, 1219.		1
162	Crystal Structures and Optical Properties of Cyanine Dyes Depending on Various Counter Anions. ACS Omega, 2021, 6, 28421-28431.	1.6	1

#	Article	IF	CITATIONS
163	Photoconductivity of Micrometer Long Organic Single Crystal Fiber Array Prepared by Evaporationâ€Induced Selfâ€Assembled Method. Israel Journal of Chemistry, 0, , .	1.0	1
164	Electrochromic redox reactions of vapourâ€deposited thin films of tetrapyridotetraazaporphyrinatozinc(II). Journal of Porphyrins and Phthalocyanines, 2000, 4, 112-122.	0.4	1
165	Low-Temperature Fabrication of Efficient Porous Titania Photoelectrodes by Hydrothermal Crystallization at the Solid/Gas Interface ChemInform, 2003, 34, no.	0.1	Ο
166	Modification of ZnO Layers by Molecular Adsorbates During Electrochemical Deposition. Materials Research Society Symposia Proceedings, 2006, 957, 1.	0.1	0
167	Solution-based emerging hybrid solar cells. Monatshefte Für Chemie, 2017, 148, 793-794.	0.9	0
168	Proton-Coupled Reversible Redox Reaction of Zinc-Terephthalate Metal-Organic Framework. ECS Transactions, 2018, 88, 259-268.	0.3	0
169	Preface—JES Focus Issue on 4D Materials and Systems. Journal of the Electrochemical Society, 2019, 166, Y11-Y11.	1.3	0
170	Microwave-Assisted Hydrothermal Synthesis of Transition Metal Doped ZnO Nanoparticles and Their Electrocatalytic Activity for Water Oxidation. ECS Meeting Abstracts, 2020, MA2020-01, 1561-1561.	0.0	0
171	Electro-Polymerization of Hydrogen-Bonding Conductive Polymers As Metal-Free Electrocatalysts for Energy Conversion. ECS Meeting Abstracts, 2020, MA2020-01, 1537-1537.	0.0	Ο
172	Electrodeposition of Zn-Co-Terephthalate MOF and Its Conversion to Co-Doped ZnO Thin Films. ECS Meeting Abstracts, 2020, MA2020-01, 1163-1163.	0.0	0
173	Synthesis of Carboxylated Viologen Cations and Their CT Salts with 1,3-Bis(dicyanomethylidene)Indan Anion. ECS Meeting Abstracts, 2020, MA2020-01, 2906-2906.	0.0	Ο
174	Synthesis of Poly-Neutral Red and Its Electrocatalytic Property Towards CO2 Reduction Reaction. ECS Meeting Abstracts, 2020, MA2020-01, 2907-2907.	0.0	0
175	Concerted Photoluminescence of Electrochemically Self-Assembled CuSCN / Stilbazolium Dye Hybrid Thin Films. ECS Meeting Abstracts, 2020, MA2020-01, 1099-1099.	0.0	0
176	Synthesis of Alkyl-Substituted Viologen Cation/Indanyl Anion Organic Charge Transfer Salts. ECS Meeting Abstracts, 2020, MA2020-01, 1095-1095.	0.0	0
177	Mechanistic Studies for Electrochemical Self-Assembly of CuSCN/Stilbazolium Dye Hybrid Thin Films. ECS Meeting Abstracts, 2020, MA2020-01, 1160-1160.	0.0	Ο
178	Mimicking Noble Metals Using Hydrogen-Bonded Conducting Polymers for Electrocatalysis. ECS Meeting Abstracts, 2020, MA2020-01, 2654-2654.	0.0	0
179	Synthesis of Zinc-Terephthalate Metal Organic Frameworksand Their Application to Redox Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 2857-2857.	0.0	0
180	Electrochemical Self-Assembly of CuSCN/4-Cyano-4'-(N'-methyl)Stilbazolium Hybrid Thin Films. ECS Transactions, 2020, 97, 457-469.	0.3	0

#	Article	IF	CITATIONS
181	Optical Properties of CuSCN/Stilbazolium Dye Hybrid Thin Films. Journal of Nano- and Electronic Physics, 2021, 13, 06033-1-06033-4.	0.2	0
182	Tuning of Morphological, Crystallographic and Optoelectronic Properties of CuSCN By Electrodeposition. ECS Meeting Abstracts, 2020, MA2020-02, 3691-3691.	0.0	0
183	Synthesis of Zinc-Terephthalate Metal Organic Frameworks and Their Application to Redox Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 3718-3718.	0.0	0
184	(Invited) Mechanistic Studies for Electrochemical Self-Assembly of Cuscn/Stilbazolium Dye Hybrid Thin Films. ECS Meeting Abstracts, 2020, MA2020-02, 3689-3689.	0.0	0
185	Electrochromic Property of Adsorbed Carboxylated Viologen on Zinc Oxide. ECS Meeting Abstracts, 2020, MA2020-02, 3715-3715.	0.0	0
186	Conducting Poly-Adenine Electrocatalyst for Hydrogen Evolution Reaction. ECS Meeting Abstracts, 2020, MA2020-02, 3719-3719.	0.0	0
187	Electrochemical Co-Polymerization of Neutral Red and Aniline for Electrocatalytic Hydrogen Evolution Reaction. ECS Meeting Abstracts, 2020, MA2020-02, 3721-3721.	0.0	0
188	(Invited) Photoluminescent ZnO Thin Films By Photochemical Gel Conversion Under VUV Irradiation. ECS Meeting Abstracts, 2020, MA2020-02, 3701-3701.	0.0	0
189	The Study of Synthesis Mechanism of Poly-Neutral Red and Its Electrocatalytic Property. ECS Meeting Abstracts, 2020, MA2020-02, 3582-3582.	0.0	0
190	(Invited) Fabrication of Aramid Paper Electrodes for Electrochemical Applications. ECS Meeting Abstracts, 2020, MA2020-02, 3700-3700.	0.0	0
191	3D Printing of Capacitor Using Ionic Liquid Gel. ECS Transactions, 2022, 107, 20235-20242.	0.3	0