Jody C Culham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7541889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuroimaging of cognitive functions in human parietal cortex. Current Opinion in Neurobiology, 2001, 11, 157-163.	2.0	746
2	Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Experimental Brain Research, 2003, 153, 180-189.	0.7	636
3	Human parietal cortex in action. Current Opinion in Neurobiology, 2006, 16, 205-212.	2.0	578
4	Ventral occipital lesions impair object recognition but not objectâ€directed grasping: an fMRI study. Brain, 2003, 126, 2463-2475.	3.7	574
5	Cortical fMRI Activation Produced by Attentive Tracking of Moving Targets. Journal of Neurophysiology, 1998, 80, 2657-2670.	0.9	482
6	The role of parietal cortex in visuomotor control: What have we learned from neuroimaging?. Neuropsychologia, 2006, 44, 2668-2684.	0.7	413
7	Functional Magnetic Resonance Imaging Reveals the Neural Substrates of Arm Transport and Grip Formation in Reach-to-Grasp Actions in Humans. Journal of Neuroscience, 2010, 30, 10306-10323.	1.7	289
8	Attention Response Functions. Neuron, 2001, 32, 737-745.	3.8	275
9	Distinguishing Subregions of the Human MT+ Complex Using Visual Fields and Pursuit Eye Movements. Journal of Neurophysiology, 2001, 86, 1991-2000.	0.9	251
10	Decoding Action Intentions from Preparatory Brain Activity in Human Parieto-Frontal Networks. Journal of Neuroscience, 2011, 31, 9599-9610.	1.7	237
11	The fusiform face area is not sufficient for face recognition: Evidence from a patient with dense prosopagnosia and no occipital face area. Neuropsychologia, 2006, 44, 594-609.	0.7	226
12	Neural coding within human brain areas involved in actions. Current Opinion in Neurobiology, 2015, 33, 141-149.	2.0	206
13	Is That within Reach? fMRI Reveals That the Human Superior Parieto-Occipital Cortex Encodes Objects Reachable by the Hand. Journal of Neuroscience, 2009, 29, 4381-4391.	1.7	189
14	Decoding the neural mechanisms of human tool use. ELife, 2013, 2, e00425.	2.8	158
15	A double dissociation between sensitivity to changes in object identity and object orientation in the ventral and dorsal visual streams: A human fMRI study. Neuropsychologia, 2006, 44, 218-228.	0.7	156
16	Decoding Effector-Dependent and Effector-Independent Movement Intentions from Human Parieto-Frontal Brain Activity. Journal of Neuroscience, 2011, 31, 17149-17168.	1.7	148
17	Where One Hand Meets the Other: Limb-Specific and Action-Dependent Movement Plans Decoded from Preparatory Signals in Single Human Frontoparietal Brain Areas. Journal of Neuroscience, 2013, 33, 1991-2008.	1.7	144
18	Reaching for the unknown: Multiple target encoding and real-time decision-making in a rapid reach task. Cognition, 2010, 116, 168-176.	1.1	140

#	Article	IF	CITATIONS
19	fMRI reveals a preference for near viewing in the human parieto-occipital cortex. NeuroImage, 2007, 36, 167-187.	2.1	129
20	FMRI Reveals a Dissociation between Grasping and Perceiving the Size of Real 3D Objects. PLoS ONE, 2007, 2, e424.	1.1	125
21	Bringing the real world into the fMRI scanner: Repetition effects for pictures versus real objects. Scientific Reports, 2011, 1, 130.	1.6	123
22	Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: A TMS approach. Neuropsychologia, 2009, 47, 1553-1562.	0.7	118
23	Does tool-related fMRI activity within the intraparietal sulcus reflect the plan to grasp?. NeuroImage, 2007, 36, T94-T108.	2.1	116
24	What Does the Brain Do When You Fake It? An fMRI Study of Pantomimed and Real Grasping. Journal of Neurophysiology, 2007, 97, 2410-2422.	0.9	114
25	Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI. Journal of Neurophysiology, 2012, 107, 2463-2474.	0.9	112
26	Recovery of fMRI Activation in Motion Area MT Following Storage of the Motion Aftereffect. Journal of Neurophysiology, 1999, 81, 388-393.	0.9	102
27	Dissociating Arbitrary Stimulus-Response Mapping from Movement Planning during Preparatory Period: Evidence from Event-Related Functional Magnetic Resonance Imaging. Journal of Neuroscience, 2006, 26, 2704-2713.	1.7	95
28	Functional magnetic resonance adaptation reveals the involvement of the dorsomedial stream in hand orientation for grasping. Journal of Neurophysiology, 2011, 106, 2248-2263.	0.9	93
29	Visual motion and the human brain: what has neuroimaging told us?. Acta Psychologica, 2001, 107, 69-94.	0.7	92
30	Observing Learned Object-specific Functional Grasps Preferentially Activates the Ventral Stream. Journal of Cognitive Neuroscience, 2010, 22, 970-984.	1.1	92
31	Distinct and distributed functional connectivity patterns across cortex reflect the domain-specific constraints of object, face, scene, body, and tool category-selective modules in the ventral visual pathway. NeuroImage, 2014, 96, 216-236.	2.1	88
32	Disentangling Representations of Object and Grasp Properties in the Human Brain. Journal of Neuroscience, 2016, 36, 7648-7662.	1.7	88
33	A Functional Role for Motor Simulation in Identifying Tools. Psychological Science, 2010, 21, 1215-1219.	1.8	84
34	Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations. Cortex, 2018, 98, 34-48.	1.1	81
35	Behavioral and Neuroimaging Evidence for a Contribution of Color and Texture Information to Scene Classification in a Patient with Visual Form Agnosia. Journal of Cognitive Neuroscience, 2004, 16, 955-965.	1.1	80
36	Human fMRI Reveals That Delayed Action Re-Recruits Visual Perception. PLoS ONE, 2013, 8, e73629.	1.1	78

#	Article	IF	CITATIONS
37	fMRI Repetition Suppression for Familiar But Not Arbitrary Actions with Tools. Journal of Neuroscience, 2012, 32, 4247-4259.	1.7	74
38	fMRI reveals a lower visual field preference for hand actions in human superior parieto-occipital cortex (SPOC) and precuneus. Cortex, 2013, 49, 2525-2541.	1.1	73
39	Independent Aftereffects of Attention and Motion. Neuron, 2000, 28, 607-615.	3.8	72
40	Representation of Multiple Body Parts in the Missing-Hand Territory of Congenital One-Handers. Current Biology, 2017, 27, 1350-1355.	1.8	71
41	The Human Dorsal Stream Adapts to Real Actions and 3D Shape Processing: A Functional Magnetic Resonance Imaging Study. Journal of Neurophysiology, 2008, 100, 2627-2639.	0.9	65
42	Activity patterns in the categoryâ€selective occipitotemporal cortex predict upcoming motor actions. European Journal of Neuroscience, 2013, 38, 2408-2424.	1.2	65
43	Orientation sensitivity to graspable objects: An fMRI adaptation study. NeuroImage, 2007, 36, T87-T93.	2.1	64
44	fMRI Activation during Observation of Others' Reach Errors. Journal of Cognitive Neuroscience, 2010, 22, 1493-1503.	1.1	55
45	Neuroimaging reveals enhanced activation in a reach-selective brain area for objects located within participants' typical hand workspaces. Neuropsychologia, 2011, 49, 3710-3721.	0.7	55
46	Neural correlates of object size and object location during grasping actions. European Journal of Neuroscience, 2015, 41, 454-465.	1.2	55
47	What Role Does "Elongation―Play in "Tool-Specific―Activation and Connectivity in the Dorsal and Ventral Visual Streams?. Cerebral Cortex, 2018, 28, 1117-1131.	1.6	54
48	Human neuroimaging reveals the subcomponents of grasping, reaching and pointing actions. Cortex, 2018, 98, 128-148.	1.1	54
49	One to Four, and Nothing More. Psychological Science, 2011, 22, 803-811.	1.8	53
50	Artificial limb representation in amputees. Brain, 2018, 141, 1422-1433.	3.7	53
51	The relationship between fMRI adaptation and repetition priming. NeuroImage, 2006, 32, 1432-1440.	2.1	49
52	The Treachery of Images: How Realism Influences Brain and Behavior. Trends in Cognitive Sciences, 2021, 25, 506-519.	4.0	49
53	The large-scale organization of shape processing in the ventral and dorsal pathways. ELife, 2017, 6, .	2.8	49
54	Functional subdivisions of medial parieto-occipital cortex in humans and nonhuman primates using resting-state fMRI. NeuroImage, 2015, 116, 10-29.	2.1	48

#	Article	IF	CITATIONS
55	Dual-task interference is greater in delayed grasping than in visually guided grasping. Journal of Vision, 2007, 7, 5.	0.1	46
56	Selective Modulation of Early Visual Cortical Activity by Movement Intention. Cerebral Cortex, 2019, 29, 4662-4678.	1.6	43
57	Contribution of visual and proprioceptive information to the precision of reaching movements. Experimental Brain Research, 2010, 202, 15-32.	0.7	42
58	Human dorsomedial parieto-motor circuit specifies grasp during the planning of goal-directed hand actions. Cortex, 2017, 92, 175-186.	1.1	42
59	To use or to move: goal-set modulates priming when grasping real tools. Experimental Brain Research, 2011, 212, 125-142.	0.7	41
60	Integration of haptic and visual size cues in perception and action revealed through cross-modal conflict. Experimental Brain Research, 2010, 201, 863-873.	0.7	39
61	Decoding motor imagery and action planning in the early visual cortex: Overlapping but distinct neural mechanisms. NeuroImage, 2020, 218, 116981.	2.1	39
62	Mental blocks: fMRI reveals top-down modulation of early visual cortex when obstacles interfere with grasp planning. Neuropsychologia, 2011, 49, 1703-1717.	0.7	38
63	Neural correlates of the multiple-object tracking deficit in amblyopia. Vision Research, 2011, 51, 2517-2527.	0.7	37
64	Recruitment of Foveal Retinotopic Cortex During Haptic Exploration of Shapes and Actions in the Dark. Journal of Neuroscience, 2017, 37, 11572-11591.	1.7	35
65	Short-term motor plasticity revealed in a visuomotor decision-making task. Behavioural Brain Research, 2010, 214, 130-134.	1.2	33
66	Do human brain areas involved in visuomotor actions show a preference for real tools over visually similar non-tools?. Neuropsychologia, 2015, 77, 35-41.	0.7	33
67	Visual salience dominates early visuomotor competition in reaching behavior. Journal of Vision, 2011, 11, 16-16.	0.1	32
68	Evaluation of preprocessing steps to compensate for magnetic field distortions due to body movements in BOLD fMRI. Magnetic Resonance Imaging, 2010, 28, 235-244.	1.0	31
69	Motion capture of luminance stimuli by equiluminous color gratings and by attentive tracking. Vision Research, 1994, 34, 2701-2706.	0.7	29
70	Distinct Visual Processing of Real Objects and Pictures of Those Objects in 7- to 9-month-old Infants. Frontiers in Psychology, 2016, 7, 827.	1.1	27
71	Preserved Haptic Shape Processing after Bilateral LOC Lesions. Journal of Neuroscience, 2015, 35, 13745-13760.	1.7	24
72	Priming tool actions: Are real objects more effective primes than pictures?. Experimental Brain Research, 2016, 234, 963-976.	0.7	23

#	Article	IF	CITATIONS
73	The neural correlates of change detection in the face perception network. Neuropsychologia, 2008, 46, 2169-2176.	0.7	19
74	Counting on the motor system: Rapid action planning reveals the format- and magnitude-dependent extraction of numerical quantity. Journal of Vision, 2014, 14, 30-30.	0.1	19
75	Psychophysical and neuroimaging responses to moving stimuli in a patient with the Riddoch phenomenon due to bilateral visual cortex lesions. Neuropsychologia, 2019, 128, 150-165.	0.7	19
76	Aging Effects on Vernier Hyperacuity: a Function of Oscillation Rate but not Target Contrast. Optometry and Vision Science, 2001, 78, 676-682.	0.6	18
77	fMRI reveals greater within―than betweenâ€hemifield integration in the human lateral occipital cortex. European Journal of Neuroscience, 2008, 27, 3299-3309.	1.2	18
78	Connecting the Dots. Psychological Science, 2013, 24, 1456-1465.	1.8	18
79	Functional interaction between human dorsal premotor cortex and the ipsilateral primary motor cortex for grasp plans. NeuroReport, 2018, 29, 1355-1359.	0.6	18
80	The facilitative effect of gestures on the neural processing of semantic complexity in a continuous narrative. NeuroImage, 2019, 195, 38-47.	2.1	18
81	Differential effects of delay upon visually and haptically guided grasping and perceptual judgments. Experimental Brain Research, 2009, 195, 473-479.	0.7	16
82	Systematic eye movements do not account for the perception of motion during attentive tracking. Vision Research, 2001, 41, 3505-3511.	0.7	14
83	Adaptable Categorization of Hands and Tools in Prosthesis Users. Psychological Science, 2017, 28, 395-398.	1.8	14
84	A cortical network that marks the moment when conscious representations are updated. Neuropsychologia, 2015, 79, 113-122.	0.7	13
85	Object complexity modulates the association between action and perception in childhood. Journal of Experimental Child Psychology, 2019, 179, 56-72.	0.7	13
86	The Role of Temporal Synchrony as a Binding Cue for Visual Persistence in Early Visual Areas: An fMRI Study. Journal of Neurophysiology, 2009, 102, 3461-3468.	0.9	11
87	A selective impairment of perception of sound motion direction in peripheral space: A case study. Neuropsychologia, 2016, 80, 79-89.	0.7	11
88	The toolish hand illusion: embodiment of a tool based on similarity with the hand. Scientific Reports, 2021, 11, 2024.	1.6	11
89	The age deficit on photopic counterphase flicker: Contrast, spatial frequency, and luminance effects Canadian Journal of Experimental Psychology, 2002, 56, 177-186.	0.7	8
90	Attention-Grabbing Motion in the Human Brain. Neuron, 2003, 40, 451-452.	3.8	8

#	Article	IF	CITATIONS
91	Reflections on blindsight: Neuroimaging and behavioural explorations clarify a case of reversed localisation in the blind field of a patient with hemianopia Canadian Journal of Experimental Psychology, 2010, 64, 86-101.	0.7	7
92	Familiar size affects the perceived size and distance of real objects even with binocular vision. Journal of Vision, 2021, 21, 21.	0.1	7
93	Contribution of Bodily and Gravitational Orientation Cues to Face and Letter Recognition. Multisensory Research, 2015, 28, 427-442.	0.6	6
94	Manual exploration of objects is related to 7-month-old infants' visual preference for real objects. , 2021, 62, 101512.		6
95	Dissociations within Association Cortex. Neuron, 2002, 33, 318-320.	3.8	4
96	Reanalysis Suggests Evidence for Motor Simulation in Naming Tools Is Limited: A Commentary on Witt, Kemmerer, Linkenauger, and Culham (2010). Psychological Science, 2020, 31, 1036-1039.	1.8	4
97	The advantage of real objects over matched pictures in infants' processing of the familiar size of objects. Infant and Child Development, 2021, 30, e2234.	0.9	4
98	There's Waldo!. Trends in Cognitive Sciences, 2001, 5, 231.	4.0	3
99	Grasping performance depends upon the richness of hand feedback. Experimental Brain Research, 2021, 239, 835-846.	0.7	3
100	Cortical Areas Engaged in Movement: Neuroimaging Methods. , 2015, , 21-29.		3
101	Timing in the visual hierarchy. Trends in Cognitive Sciences, 1998, 2, 473.	4.0	2
102	Do infants show knowledge of the familiar size of everyday objects?. Journal of Experimental Child Psychology, 2020, 195, 104848.	0.7	2
103	New ideas on how drivers perceive speed emerge from the fog. ELife, 2012, 1, e00281.	2.8	2
104	The large-scale organization of object processing in the ventral and dorsal pathways. Journal of Vision, 2017, 17, 286.	0.1	2
105	Which brain areas are responsible for which aspects of grasping?. Journal of Vision, 2019, 19, 110b.	0.1	2
106	Motion capture and visual attention: a reply to Ramachandran (1996). Vision Research, 1996, 36, 79-80.	0.7	1
107	How neurons become BOLD?. Trends in Cognitive Sciences, 2001, 5, 416.	4.0	1
108	Turn the Other Cheek: Viewpoint Aftereffects for Faces and Objects. Neuron, 2005, 45, 644-645.	3.8	1

#	Article	IF	CITATIONS
109	Look Before You Reach!. Neuron, 2005, 48, 713-714.	3.8	1
110	Bringing the real world into the fMRI scanner: Real objects amplify the neural correlates of valuation compared to photos. Journal of Vision, 2013, 13, 499-499.	0.1	1
111	Activity in hand- and tool-selective regions for prosthetic limbs in amputees is associated with prosthesis usage in everyday life. Journal of Vision, 2015, 15, 983.	0.1	1
112	fMRI reveals different activation patterns for real objects vs. photographs of objects. Journal of Vision, 2016, 16, 512.	0.1	1
113	Videos are more effective than pictures at localizing tool- and hand-selective activation in fMRI. Journal of Vision, 2017, 17, 991.	0.1	1
114	Which aspects of size and distance for real objects are coded through the hierarchy of visual areas?. Journal of Vision, 2019, 19, 15c.	0.1	1
115	The brain as film director. Trends in Cognitive Sciences, 2001, 5, 376-377.	4.0	0
116	Brain activity around the clock. Trends in Cognitive Sciences, 2002, 6, 114.	4.0	0
117	Look Before You Reach!. Neuron, 2006, 49, 931.	3.8	0
118	Review of Networks of the brain Canadian Psychology, 2011, 52, 321-322.	1.4	0
119	Haptic object recognition is influenced by the orientation of the body relative to gravity. Seeing and Perceiving, 2012, 25, 122.	0.4	0
120	The Left Hand Doesn't Know What the Right Hand Is Doing—or Does It?. Cell Reports, 2016, 17, 2809-2810.	. 2.9	0
121	Differences in size and distance perception between virtual reality and the real world. Journal of Vision, 2021, 21, 2120.	0.1	0
122	Familiar Size Reliably Affects Size and Distance Perception in High-Resolution Virtual Reality. Journal of Vision, 2021, 21, 2977.	0.1	0
123	Using Functional Near-Infrared Spectroscopy for the Study of Visually Guided Hand Actions. Journal of Vision, 2021, 21, 2958.	0.1	0
124	Does behavioral dissociation of real vs. pantomime movements only apply to visually guided action?. Journal of Vision, 2015, 15, 1157.	0.1	0
125	Localizing tool and hand-selective areas with fMRI: Comparing video and picture stimuli. Journal of Vision, 2015, 15, 982.	0.1	0
126	A new multivariate analysis method suggests timing is key factor in visually-guided reach-to-grasp movements. Journal of Vision, 2017, 17, 459.	0.1	0

#	Article	IF	CITATIONS
127	Neuroimaging reveals the human neural representations for visually guided grasping of real objects and pictures. Journal of Vision, 2017, 17, 383.	0.1	0
128	Decoding real and imagined actions: overlapping but distinct neural representations for planning vs. imagining hand movements. Journal of Vision, 2017, 17, 458.	0.1	0
129	Flexibility of categorical body representation following limb-loss and prosthesis usage in the occipitotemporal cortex. Journal of Vision, 2018, 18, 431.	0.1	0
130	Predicting how we grasp arbitrary objects. Journal of Vision, 2018, 18, 179.	0.1	0
131	Adults prefer to look at real objects more than photos. Journal of Vision, 2019, 19, 58c.	0.1	0
132	Decoding representations of food images within the ventral visual stream. Journal of Vision, 2020, 20, 267.	0.1	0
133	Familiar size affects size and distance perception for real objects, even in the presence of oculomotor cues Journal of Vision, 2020, 20, 1568.	0.1	0