Antti Kivimäki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7541662/publications.pdf

Version: 2024-02-01

192 papers

4,477 citations

38 h-index 57 g-index

196 all docs 196
docs citations

196 times ranked 2420 citing authors

#	Article	IF	Citations
1	Ion fragmentation study of [EMMIM][TFSI], [EMIM][OTf] and [EMIM][DCA] by vacuum ultraviolet light. International Journal of Mass Spectrometry, 2022, 471, 116732.	1.5	4
2	Soft X-ray Induced Production of Neutral Fragments in High-Rydberg States at the O 1s Ionization Threshold of the Water Molecule. Journal of Physical Chemistry A, 2021, 125, 713-720.	2.5	3
3	Photodissociation dynamics of halogenated aromatic molecules: the case of core-ionized tetrabromothiophene. Physical Chemistry Chemical Physics, 2021, 23, 21249-21261.	2.8	3
4	Core and Valence Level Photoelectron Spectroscopy of Nanosolvated KCl. Journal of Physical Chemistry A, 2021, 125, 4750-4759.	2.5	5
5	Performance and characterization of the FinEstBeAMS beamline at the MAXÂIV Laboratory. Journal of Synchrotron Radiation, 2021, 28, 1620-1630.	2.4	28
6	Valence shell photoelectron angular distributions and vibrationally resolved spectra of imidazole: A combined experimental–theoretical study. Journal of Chemical Physics, 2021, 155, 054304.	3.0	5
7	Vacuum ultraviolet photoionization and ionic fragmentation of the isoxazole molecules. International Journal of Mass Spectrometry, 2020, 449, 116276.	1.5	7
8	Negativeâ€ion/positiveâ€ion coincidence spectroscopy as a tool to identify anionic fragments: The case of coreâ€excited CHF ₃ . Journal of Mass Spectrometry, 2020, 55, e4487.	1.6	0
9	Gas-phase endstation of electron, ion and coincidence spectroscopies for diluted samples at the FinEstBeAMS beamline of the MAXâ€IV 1.5â€GeV storage ring. Journal of Synchrotron Radiation, 2020, 27, 1080-1091.	2.4	19
10	Electron–ion coincidence spectroscopy of a large organic molecule: photofragmentation of avobenzone after valence and core ionisation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 244001.	1.5	3
11	The electronic structure of ionic liquids based on the TFSI anion: A gas phase UPS and DFT study. Journal of Molecular Liquids, 2019, 294, 111580.	4.9	10
12	Ultra-Fast-VUV Photoemission Study of UV Excited 2-Nitrophenol. Journal of Physical Chemistry A, 2019, 123, 1295-1302.	2.5	14
13	Progress in development of a new luminescence setup at the FinEstBeAMS beamline of the MAX IV laboratory. Radiation Measurements, 2019, 121, 91-98.	1.4	39
14	Fragmentation of Methanol Molecules after Core Excitation and Core Ionization Studied by Negative-Ion/Positive-Ion Coincidence Experiments. Journal of Physical Chemistry A, 2018, 122, 224-233.	2.5	2
15	Characterisation of the electronic structure of galvinoxyl free radical by variable energy UPS, XPS and NEXAFS spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 2480-2491.	2.8	11
16	Acetylacetone photodynamics at a seeded free-electron laser. Nature Communications, 2018, 9, 63.	12.8	72
17	Selective negative-ion formation from core-valence doubly excited states of the water molecule. Physical Review A, 2018, 98, .	2.5	0
18	Study of ultraviolet-visible fluorescence emission following resonant Auger decay of the 2 p \cdot 1 nl core-excited states of argon atoms. Journal of Electron Spectroscopy and Related Phenomena, 2018, 226, 35-40.	1.7	1

#	Article	IF	Citations
19	Elimination and migration of hydrogen in the vacuum-ultraviolet photodissociation of pyridine molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 015101.	1.5	9
20	FinEstBeaMS – A wide-range Finnish-Estonian Beamline for Materials Science at the 1.5 GeV storage ring at the MAX IV Laboratory. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 859, 83-89.	1.6	55
21	Negative- and positive-ion fragmentation of core-excited formic-acid molecules studied with three-and four-ion coincidence spectroscopy. Physical Review A, 2017, 96, .	2.5	3
22	A tandem time–of–flight spectrometer for negative–ion/positive–ion coincidence measurements with soft x-ray excitation. Review of Scientific Instruments, 2016, 87, 013109.	1.3	7
23	Negative-lon/Positive-lon Coincidence Yields of Core-Excited Water. Journal of Physical Chemistry A, 2016, 120, 6389-6393.	2.5	6
24	Yields and Time-of-Flight Spectra of Neutral High-Rydberg Fragments at the K Edges of the CO2 Molecule. Journal of Physical Chemistry A, 2016, 120, 4360-4367.	2.5	6
25	An experimental NEXAFS and computational TDDFT and ΔDFT study of the gas-phase core excitation spectra of nitroxide free radical TEMPO and its analogues. Physical Chemistry Chemical Physics, 2016, 18, 10207-10217.	2.8	21
26	The multielectron character of the S 2pâ†'4eg shape resonance in the SF6 molecule studied via detection of soft X-ray emission and neutral high-Rydberg fragments. Journal of Electron Spectroscopy and Related Phenomena, 2016, 209, 26-33.	1.7	5
27	Characterization of gas phase iron phthalocyanine with Xâ€ray photoelectron and absorption spectroscopies. Physica Status Solidi (B): Basic Research, 2015, 252, 1259-1265.	1.5	10
28	Field ionization of high-Rydberg fragments produced after inner-shell photoexcitation and photoionization of the methane molecule. Journal of Chemical Physics, 2015, 143, 114305.	3.0	5
29	Negative-ion/positive-ion coincidence spectroscopy with a novel spectrometer. Journal of Physics: Conference Series, 2015, 635, 112123.	0.4	0
30	Hydrogen migration in photodissociation of the pyridine molecules. Journal of Physics: Conference Series, 2015, 635, 112049.	0.4	2
31	Synchrotron excitation - field ionization studies of high-Rydberg fragments produced after inner-shell ionization of small molecules. Journal of Physics: Conference Series, 2015, 635, 112121.	0.4	0
32	The Low Density Matter (LDM) beamline at FERMI: optical layout and first commissioning. Journal of Synchrotron Radiation, 2015, 22, 538-543.	2.4	46
33	The study of the electronic structure of some N-heterocyclic carbenes (NHCs) by variable energy photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 10656-10667.	2.8	13
34	Soft X-ray absorption spectroscopy of Ar $<$ sub $>$ 2 $<$ /sub $>$ and ArNe dimers and small Ar clusters. Physical Chemistry Chemical Physics, 2015, 17, 22160-22169.	2.8	5
35	Control of the Polarization of a Vacuum-Ultraviolet, High-Gain, Free-Electron Laser. Physical Review X, 2014, 4, .	8.9	80
36	An experimental and theoretical study of the resonant Auger spectrum of the ethene molecule. New Journal of Physics, 2014, 16, 073022.	2.9	1

#	Article	lF	CITATIONS
37	Spectrometer for X-ray emission experiments at FERMI free-electron-laser. Review of Scientific Instruments, 2014, 85, 103112.	1.3	12
38	Vibrationally resolved high-resolution NEXAFS and XPS spectra of phenanthrene and coronene. Journal of Chemical Physics, 2014, 141, 044313.	3.0	47
39	Metastable fragment production at the C 1s and O 1s edges of the CO ₂ molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 155101.	1.5	3
40	Formation of CN (B2Σ+) radicals in the vacuum-ultraviolet photodissociation of pyridine and pyrimidine molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 055103.	1.5	20
41	Hydrogen migration in formation of NH(A3Î) radicals via superexcited states in photodissociation of isoxazole molecules. Journal of Chemical Physics, 2014, 141, 064301.	3.0	14
42	Characterisation of the electronic structure of some stable nitroxyl radicals using variable energy photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 10734-10742.	2.8	25
43	CITIUS: An infrared-extreme ultraviolet light source for fundamental and applied ultrafast science. Review of Scientific Instruments, 2014, 85, 023104.	1.3	40
44	Core photoionization of the argon dimer in the photon-energy range of 255–340 eV studied by a photoelectron-photoion-photoion coincidence technique. Physical Review A, 2014, 89, .	2.5	4
45	Polarization measurement of free electron laser pulses in the VUV generated by the variable polarization source FERMI., 2014, , .		4
46	Spectrometer for single-shot x-ray emission and photon diagnostics. , 2014, , .		1
47	The Role of the Partner Atom and Resonant Excitation Energy in Interatomic Coulombic Decay in Rare Gas Dimers. Journal of Physical Chemistry Letters, 2013, 4, 1797-1801.	4.6	41
48	A modular end-station for atomic, molecular, and cluster science at the low density matter beamline of FERMI@Elettra. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 164007.	1.5	78
49	On the production of N ⁺ ₂ ions at the N 1s edge of the nitrogen molecule. Physica Scripta, 2013, 87, 065304.	2.5	2
50	Use of two-dimensional photoelectron spectroscopy in the decomposition of an inner-shell excitation spectrum broadened by super-Coster-Kronig decay. Physical Review A, 2013, 88, .	2.5	5
51	Production of excited H atoms at the C 1sedge of the methane molecule studied by VUV-photon–photoion and metastable-fragment–photoion coincidence experiments. Physical Review A, 2013, 88, .	2.5	7
52	Superexcited states in the vacuum-ultraviolet photofragmentation of isoxazole molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 205103.	1.5	16
53	Valence photoionization of the ix-mmi:math xmins:mmi="http://www.w3.org/1998/Math/MathMil" display="inline"> <mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub> molecule in the region of the N <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathMl"><mml:mrow><mml:mrow></mml:mrow></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< td=""><td>2.5 w><td>2 math>Rydber</td></td></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	2.5 w> <td>2 math>Rydber</td>	2 math>Rydber
54	Valence electronic structure and photofragmentation of 1,1,1,2-tetrafluoroethane (CF3-CH2F). Physical Review A, 2012, 85, .	2.5	11

#	Article	IF	CITATIONS
55	X-ray emission–photoion coincidence spectroscopy of the CO2 molecule at the O 1s edge. Chemical Physics Letters, 2012, 531, 252-256.	2.6	4
56	A velocity map imaging apparatus for gas phase studies at FERMI@Elettra. Nuclear Instruments & Methods in Physics Research B, 2012, 284, 69-73.	1.4	11
57	Comprehensive Core-Level Study of the Effects of Isomerism, Halogenation, and Methylation on the Tautomeric Equilibrium of Cytosine. Journal of Physical Chemistry A, 2011, 115, 7722-7733.	2.5	13
58	Effect of the Cl2p core orbital excitation on the nuclear dynamics of the three dichloroethylene isomers. Journal of Electron Spectroscopy and Related Phenomena, 2011, 184, 24-28.	1.7	7
59	O 1s excitation and ionization processes in the CO2molecule studied via detection of low-energy fluorescence emission. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 165103.	1.5	7
60	Radiationless decay in the region of the 2t2g and 4eg resonances in SF6. Journal of Chemical Physics, 2011, 134, 094308.	3.0	5
61	Photoabsorption and S 2p photoionization of the SF6 molecule: Resonances in the excitation energy range of 200–280 eV. Journal of Chemical Physics, 2011, 134, 174311.	3.0	10
62	Photofragmentation of tetrahydrofuran molecules in the vacuum-ultraviolet region via superexcited states studied by fluorescence spectroscopy. Physical Review A, 2011, 83, .	2.5	18
63	Synchrotron radiation photoionization mass spectrometry of laser ablated species. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 425-429.	1.4	3
64	S 2p photoabsorption of the SF5CF3 molecule: Experiment, theory and comparison with SF6. Chemical Physics, 2010, 375, 101-109.	1.9	3
65	Dissociative photoionization of the NO molecule studied by photoelectron–photon coincidence technique. Journal of Electron Spectroscopy and Related Phenomena, 2010, 182, 63-69.	1.7	1
66	Amine Functionalization of Gold Surfaces: Ultra High Vacuum Deposition of Cysteamine on Au(111). Journal of Physical Chemistry C, 2010, 114, 15011-15014.	3.1	29
67	Shake-up transitions in S 2p, S 2s and F 1s photoionization of the SF ₆ molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 055102.	1.5	18
68	Fluorescence emission at core-to-Rydberg excitations in the N2molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 185103.	1.5	1
69	Line shape narrowing in the ultraviolet yield at the N 1s â†'Ï€* resonance of the N2molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 075102. Assignment of the <mml:math <="" altimg="si141.gif" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.5</td><td>2</td></mml:math>	1.5	2
70	display="inline" overflow="scroll"> <mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow>	ml:mn>2 </td <td>ˈmm̞l:mn><mn< td=""></mn<></td>	ˈmm̞l:mn> <mn< td=""></mn<>
71	overflow="scroll"> <mml:mrow><mml:msub><mml:mr. 012051.<="" 190,="" 2009,="" 474,="" 67-73.="" a="" and="" applied="" as="" carbon="" chemical="" conference="" core="" dioxide="" emission="" excitations="" furan="" journal="" letters,="" molecules.="" of="" physics="" physics:="" probe="" series,="" td="" the="" to="" uv-visible=""><td>0.4</td><td>1</td></mml:mr.></mml:msub></mml:mrow>	0.4	1
72	Photofragmentation of 2-Deoxy-D-Ribose Molecules in the Gas Phase. ChemPhysChem, 2008, 9, 1020-1029.	2.1	30

#	Article	IF	CITATIONS
73	Photoelectron spectroscopy of sulfur L levels in the SF5CF3 molecule. Chemical Physics, 2008, 353, 202-208.	1.9	8
74	VUV photoionisation of free azabenzenes: Pyridine, pyrazine, pyrimidine, pyridazine and s-triazine. International Journal of Mass Spectrometry, 2008, 275, 55-63.	1.5	33
75	Core localization and $\ddot{l}f\hat{a}$ — delocalization in the O 1s core-excited sulfur dioxide molecule. Journal of Chemical Physics, 2008, 128, 114311.	3.0	5
76	The C 1s and N 1s near edge x-ray absorption fine structure spectra of five azabenzenes in the gas phase. Journal of Chemical Physics, 2008, 128, 044316.	3.0	59
77	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mn>3</mml:mn><mml:msup><mml:mi>d</mml:mi><mml:mrow><mml:mo>xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:mo></mml:mrow></mml:msup></mml:mrow>	∙â^' <td>mo><mml:mi< td=""></mml:mi<></td>	mo> <mml:mi< td=""></mml:mi<>

#	Article	IF	CITATIONS
91	Detection of thePe1Series of Doubly Excited Helium States belowN=2via the Stark Effect. Physical Review Letters, 2006, 96, 093001.	7.8	21
92	A new system for photon induced fluorescence spectroscopy applied to the study of doubly excited states of helium. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 39-42.	1.7	14
93	Synchrotron radiation induced fluorescence spectroscopy of SF6. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 387-398.	1.5	2
94	Resonant Auger spectroscopy of argon clusters at the2pthreshold. Physical Review A, 2005, 71, .	2.5	10
95	loniclike energy structure of neutral core-excited states in free Kr clusters. Physical Review A, 2005, 72, .	2.5	11
96	Molecular alignment of ammonia studied by electron-ion-ion coincidence spectroscopy. Journal of Chemical Physics, 2005, 122, 114306.	3.0	17
97	Experimental station for gas phase fluorescence spectroscopy. Review of Scientific Instruments, 2004, 75, 2402-2408.	1.3	6
98	Lifetime and Auger decay of strongly correlated 4p hole states of xenon. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137-140, 281-285.	1.7	17
99	Relaxation dynamics of SF6 studied by energy-resolved electron ion coincidence technique. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137-140, 369-375.	1.7	3
100	Selective excitation of the npïƒ1î£u+ and npï€1îu to E,F 1î£g+ emission systems in molecular hydrogen using synchrotron radiation. Chemical Physics Letters, 2004, 388, 31-35.	2.6	1
101	Autoionisation of superexcited states in N2 to the N2+ B state. Chemical Physics Letters, 2003, 372, 139-146.	2.6	5
102	Evolution of angular anisotropy of Auger emission across krypton 3d and xenon 4d thresholds. Chemical Physics, 2003, 289, 81-91.	1.9	3
103	Neutral dissociation of superexcited states in nitric oxide. Chemical Physics, 2003, 293, 65-73.	1.9	5
104	Krypton3pexcitations and subsequent resonant Auger decay. Physical Review A, 2003, 67, .	2,5	3
105	Relating the4sÏfâ^'1inner-valence photoelectron spectrum of HBr with the Br3dâ^'15lλresonant Auger spectra: An approach to the assignments. Physical Review A, 2003, 68, .	2.5	3
106	An energy resolved electronÂion coincidence study near the S 2p thresholds of the SF6molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 781-791.	1.5	26
107	Refinement in the analysis of molecular Auger electron spectra: The2pâ^'1→3pÏ€â^'2spectra of HCl and DCl. Physical Review A, 2002, 65, .	2.5	22
108	O1sâ†'Ï f *Resonance inO2: Inadequacy of Only Two Exchange-Split Components. Physical Review Letters, 2002, 88, 243002.	7.8	19

#	Article	IF	CITATIONS
109	Interference effects between2pphotoionization and resonant Auger decay channels at2sâ^1np(n=4,5)inner-shell resonances in Ar. Physical Review A, 2002, 65, .	2.5	10
110	Auger decay widths of the ligand-field-split Br 3d components in the HBr molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 4607-4611.	1.5	11
111	Auger decay at the 1sâ^'1np (n=3â€"5) resonances of Ne. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 49-53.	1.7	23
112	The valence photoelectron satellite spectra of Kr and Xe. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 141-146.	1.7	29
113	Beam line I411 at MAX IIâ€"performance and first results. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 469, 382-393.	1.6	218
114	Angular distribution in resonant Auger spectra of xenon excited below the 3d5/2ionization threshold. Physical Review A, 2001, 63, .	2.5	15
115	Inherent lifetime widths of Ar2pâ^'1,Kr3dâ^'1,Xe3dâ^'1,and Xe4dâ^'1states. Physical Review A, 2001, 64, .	2.5	139
116	Electron correlation effects in Auger cascades following2pâ^'14sexcitations in argon. Physical Review A, 2001, 63, .	2.5	11
117	Partial electron yield spectrum of N2: doubly excited states at the K-shell threshold. Chemical Physics Letters, 2000, 320, 217-221.	2.6	19
118	The Cl(2p) photoelectron spectra of the HCl and DCl molecules: the effects of the molecular field. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, L157-L164.	1.5	21
119	Interference effects between4sphotoionization and resonant Auger-decay channels at inner-shell3d94p5nln′l′double excitations in Kr. Physical Review A, 2000, 62, .	2.5	5
120	Near-threshold study of Xe3dphotoionization. Physical Review A, 2000, 63, .	2.5	50
121	A comprehensive photoabsorption, photoionization, and shake-up excitation study of the C 1s cross section of benzene. Journal of Chemical Physics, 2000, 113, 7362-7375.	3.0	59
122	The gas phase L2,3W Auger electron spectra of chlorine in XCI (X=H, D, Li, Na, K) molecules. Journal of Chemical Physics, 2000, 113, 662-675.	3.0	16
123	Vibrational and shake-up excitations in the C 1s photoionization of ethane and deuterated ethane. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 2691-2706.	1.5	12
124	Detailed analysis of the3dâ^'1→4pï€â^'2normal Auger spectra in HBr and DBr. Physical Review A, 1999, 59, 4438-4445.	2.5	41
125	Nonlinear dispersion in resonant Auger decay of H2O molecules. Physical Review A, 1999, 59, 1336-1340.	2.5	12
126	Angular distribution in xenonM4,5N4,5N4,5Auger decay. Physical Review A, 1999, 59, 315-319.	2.5	20

#	Article	IF	CITATIONS
127	L1â^'L2,3MCoster-Kronig transitions in argon. Physical Review A, 1999, 59, 4071-4074.	2.5	17
128	lonization through the Auger decay of doubly excited4d95p5nln′l′states in Xe. Physical Review A, 1999, 59, R2563-R2566.	2.5	9
129	Electron decay following the N 1s→π* excitation in N2 studied under resonant Raman conditions. Journal of Electron Spectroscopy and Related Phenomena, 1999, 98-99, 111-120.	1.7	26
130	Intensities of the xenon N4,500 Auger electron spectrum revisited. Journal of Electron Spectroscopy and Related Phenomena, 1999, 101-103, 43-47.	1.7	38
131	On the correct identification of shape resonances in NEXAFS. Surface Science, 1999, 425, L376-L380.	1.9	20
132	Constant initial state (CIS) spectroscopy in the study of the decay of core-to-bound resonances in N2. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 2623-2628.	1.5	4
133	Threshold phenomena in high-resolution core-level photoelectron spectroscopy: the ethene molecule. Journal of Electron Spectroscopy and Related Phenomena, 1998, 93, 39-48.	1.7	24
134	Interpretation of the N2,3N4,5O2,3 Coster–Kronig spectrum of xenon. Journal of Electron Spectroscopy and Related Phenomena, 1998, 93, 89-94.	1.7	18
135	Angle-resolved electronic decay of the $\tilde{l} \in *$, $\tilde{l} f^*$ and Rydberg resonances below the OK-edge in O2. Journal of Electron Spectroscopy and Related Phenomena, 1998, 93, 81-88.	1.7	16
136	The character of the Xe resonances studied with the aid of their Auger decay. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, 5337-5346.	1.5	2
137	Influence of multielectron excitations on the O1sphotoionization inCO2. Physical Review A, 1998, 58, 3654-3660.	2.5	32
138	Subnatural Linewidths in Core Level Excitation Spectra. Physical Review Letters, 1998, 81, 301-304.	7.8	19
139	â€~Characterization of the intermediate and final states of the2p3/2â^'14presonant Auger spectra of HCl. Physical Review A, 1998, 58, R1645-R1648.	2.5	8
140	Angular distribution of electronic decay following molecular and Rydberg excitations at the Cl2pedge of HCl. Physical Review A, 1998, 57, 2724-2730.	2.5	28
141	The C 1s Auger decay spectrum of : an analysis of the core-excited states. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 93-100.	1.5	9
142	Vibrationally resolved decay spectra of CO at the C and O K-edges: experiment and theory. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 5677-5692.	1.5	55
143	Angle-resolved Auger spectra of the molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 4279-4291.	1.5	23
144	Vibrational excitation in C 1s and O 1s photoionization of CO. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, L741-L747.	1.5	39

#	Article	IF	Citations
145	Core Level Energy Splitting in the C 1sPhotoelectron Spectrum of C2H2. Physical Review Letters, 1997, 79, 3617-3620.	7.8	80
146	Vibrationally Resolved O1sPhotoelectron Spectrum of CO2: Vibronic Coupling and Dynamic Core-Hole Localization. Physical Review Letters, 1997, 79, 998-1001.	7.8	79
147	Reappraisal of the Existence of Shape Resonances in the SeriesC2H2,C2H4, andC2H6. Physical Review Letters, 1997, 79, 35-38.	7.8	56
148	Assignment of fine structure in the HBr absorption spectrum at the Br3dâ†'Rydberg resonances using the Auger resonant Raman effect. Physical Review A, 1997, 56, R3342-R3345.	2.5	12
149	One-electron versus multielectron effects in the near-threshold C 1s photoionization of acetylene. Journal of Chemical Physics, 1997, 107, 4219-4224.	3.0	28
150	Electronic-state lifetime interference in the resonant Auger decay of krypton. Physical Review A, 1997, 56, 1481-1485.	2.5	35
151	Auger decay of the molecular field split S 2p core excited states in HS radical. Journal of Chemical Physics, 1997, 106, 18-23.	3.0	20
152	Fast dissociation of resonantly core excited H2S studied by vibrational and temporal analysis of the Auger spectra. Computational and Theoretical Chemistry, 1997, 394, 135-145.	1.5	28
153	High-resolution study of resonant decay following the O 1s → Ï€â^— excitation(s) in CO2: evidence for an overlapping Rydberg transition. Chemical Physics Letters, 1997, 274, 13-17.	2.6	20
154	Excitation energy dynamics observed in N2 Auger spectra near the K-shell threshold. Journal of Electron Spectroscopy and Related Phenomena, 1996, 79, 445-448.	1.7	4
155	High-resolution C 1sphotoelectron spectra of methane. Physical Review A, 1996, 53, 4120-4126.	2.5	65
156	Core Hole Double-Excitation and Atomiclike Auger Decay in N2. Physical Review Letters, 1996, 76, 2250-2253.	7.8	37
157	Angle-resolved Auger spectrum of the N2 molecule. Physical Review A, 1996, 54, 2137-2141.	2.5	28
158	Variation of Cross-Section Enhancement in Decay Spectra of CO under Resonant Raman Conditions. Physical Review Letters, 1996, 77, 4302-4305.	7.8	40
159	High-resolution pre-edge structure in the inner-shell ionization threshold region of rare gases Xe, Kr, and Ar. Physical Review A, 1996, 54, 2834-2839.	2.5	81
160	Auger decay of the dissociating coreâ€excited states in the HCl and DCl molecules. Journal of Chemical Physics, 1996, 104, 4475-4480.	3.0	51
161	Decay of the , and states of Ar studied by utilizing the Auger resonant Raman effect. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 4387-4399.	1.5	44
162	The C 1s Auger decay spectrum of the molecule: the effects of vibrational fine structure, double excitations and shake-up transitions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 2701-2709.	1.5	32

#	Article	IF	Citations
163	A high-resolution N 1s photoionization study of the molecule in the near-threshold region. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 5389-5402.	1.5	119
164	Recombination spectra of some solid rare earths excited by monochromatic and nonmonochromatic synchrotron radiation. Journal of Electron Spectroscopy and Related Phenomena, 1995, 72, 327-332.	1.7	1
165	Finnish beamline at MAXâ€kaboratory: Progress in the photon energy resolution. Review of Scientific Instruments, 1995, 66, 1621-1623.	1.3	53
166	Observation of anomalous behavior of the Xe4dphotoelectron satellites. Physical Review A, 1995, 52, 2943-2947.	2.5	8
167	Correlation effects in the resonant Auger decay of the Xe 4d3/2,5/2â^16pstates studied by high-resolution experiment and multiconfiguration Dirac-Fock theory. Physical Review A, 1995, 51, 1291-1303.	2.5	45
168	The vibrationally resolved participator Auger spectra of selectively excited C 1s(2σ)â^12Ï€1 vibrational states in carbon monoxide. Journal of Chemical Physics, 1995, 102, 7317-7324.	3.0	98
169	Conjugate shake-up-enhanced Auger transitions inN2. Physical Review A, 1995, 52, 1224-1228.	2.5	23
170	High-resolution study of the Xe 4d5/2:4d3/2branching ratio. Physical Review A, 1995, 51, 855-858.	2.5	45
171	Partial Auger decay rates of core-ionized molecular states in HCl and DCl. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 4259-4268.	1.5	38
172	The resonance Auger decay of the Xe 4d3/2,5/2-1np, n=7,8 states studied by high-resolution experiment. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 4509-4528.	1.5	16
173	Correlation satellites in the Xe N4,5-OO and Kr M4,5-NN Auger spectra. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 3831-3843.	1.5	37
174	Auger and Coster-Kronig decay of the 3p hole states in krypton. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 4091-4100.	1.5	24
175	Fast dissociation of neutral doubly excited states above the S 2p ionization threshold in H2S. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, L325-L331.	1.5	5
176	A new gas phase electron spectrometer at Max-Lab. Synchrotron Radiation News, 1994, 7, 25-31.	0.8	46
177	The L2,3MM Auger electron spectra of solid Ge excited with synchrotron radiation. Journal of Physics Condensed Matter, 1994, 6, 2423-2434.	1.8	1
178	First Observation on the Photon Energy Dependence of the Partial Auger Transition Rates in Both the4d32and4d52Auger Decay of Xe. Physical Review Letters, 1994, 73, 2031-2034.	7.8	11
179	Observation of an anomalous decay ratio between the molecular field split levels in the S 2pcore photoelectron and LVVA uger spectrum of H2S. Physical Review Letters, 1994, 72, 3021-3024.	7.8	76
180	Electron correlation in Xe 4d5/2â^16pâ†'5pâ^'26presonant Auger transitions studied by utilizing the Auger resonant Raman effect. Physical Review A, 1994, 49, R4269-R4272.	2.5	37

#	Article	IF	CITATIONS
181	KrM4,5N2,3-N2,3N2,3N2,3and XeN4,5O2,3-O2,3O2,3O2,3satellite Auger spectra following direct double ionization. Physical Review A, 1994, 49, 5124-5127.	2.5	16
182	Performance of the modified SXâ€700 plane grating monochromator at the Finnish beamline in MAXâ€lab. Review of Scientific Instruments, 1994, 65, 831-836.	1.3	87
183	A method to determine a transmission correction for electron spectrometers using synchrotron radiation. Journal of Electron Spectroscopy and Related Phenomena, 1994, 69, 181-187.	1.7	54
184	Electron spectra of HCl at core to Rydberg resonances. Journal of Physics B: Atomic, Molecular and Optical Physics, 1993, 26, 3379-3386.	1.5	5
185	Auger electron emission around 4d ionization threshold in atomic Cs. Journal of Physics B: Atomic, Molecular and Optical Physics, 1993, 26, 1435-1444.	1.5	8
186	M2,3M4,5M4,5super-Coster-Kronig spectra of solid Ge and resonance effects around the 3pthreshold. Physical Review B, 1993, 47, 4181-4186.	3.2	16
187	Subnatural linewidths in the KrM5N2,3N2,3and XeN5O2,3O2,3resonant Auger spectra. Physical Review Letters, 1993, 71, 4307-4310.	7.8	162
188	Study of different SXâ€700 monochromator designs for the undulator beamline (BL51) at MAXâ€lab. Review of Scientific Instruments, 1992, 63, 1252-1255.	1.3	64
189	X-ray induced electron yield spectrum of thin films of 1,3-trans-butadiene and 1,3,5-trans-hexatriene. Journal of Electron Spectroscopy and Related Phenomena, 1992, 59, 293-305.	1.7	31
190	Decay Channels of Core-Excited Molecular States in Cl2, HCl and H2S. Physica Scripta, 1992, T41, 122-126.	2.5	18
191	Resonance Auger and autoionization processes in solid lanthanum after 4d to 4f resonant excitation by synchrotron radiation. Journal of Physics Condensed Matter, 1991, 3, 8707-8714.	1.8	21
192	Shake processes in Auger decay of resonantly excited states of rare gases. Physica Scripta, 1990, 41, 425-428.	2.5	28