Mojca Jazbinsek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7541503/publications.pdf

Version: 2024-02-01

213 papers 5,592 citations

39 h-index 102304 66 g-index

220 all docs

220 docs citations

times ranked

220

2876 citing authors

#	Article	IF	CITATIONS
1	Design Strategy of Highly Efficient Nonlinear Optical Orangeâ€Colored Crystals with Two Electronâ€Withdrawing Groups. Advanced Photonics Research, 2022, 3, .	1.7	4
2	Phononâ€6uppressing Intermolecular Adhesives: Catecholâ€Based Broadband Organic THz Generators. Advanced Science, 2022, 9, .	5.6	11
3	New N-pyrimidinyl stilbazolium crystals for second-order nonlinear optics. Optics and Laser Technology, 2022, 156, 108454.	2.2	5
4	Solidâ€State Molecular Motions in Organic THz Generators. Advanced Optical Materials, 2021, 9, 2001521.	3.6	15
5	Ultraâ€Broadband and Highâ€Dynamicâ€Range THz Timeâ€Domain Spectroscopy System Based on Organic Crystal Emitter and Detector in Transmission and Reflection Geometry. Advanced Photonics Research, 2021, 2, 2000098.	1.7	13
6	Organic THz Generators: A Design Strategy for Organic Crystals with Ultralarge Macroscopic Hyperpolarizability. Advanced Optical Materials, 2021, 9, 2100324.	3.6	10
7	Highâ€Density Organic Electroâ€Optic Crystals for Ultraâ€Broadband THz Spectroscopy. Advanced Optical Materials, 2021, 9, 2100618.	3.6	12
8	New benzothiazolium crystals with very large off-diagonal optical nonlinearity. Dyes and Pigments, 2021, 192, 109433.	2.0	7
9	Highly Nonlinear Optical Organic Crystals for Efficient Terahertz Wave Generation, Detection, and Applications. Advanced Optical Materials, 2021, 9, 2101019.	3.6	49
10	High-power few-cycle THz generation at MHz repetition rates in an organic crystal. APL Photonics, 2020, 5, .	3.0	28
11	Organic Broadband THz Generators Optimized for Efficient Nearâ€Infrared Optical Pumping. Advanced Science, 2020, 7, 2001738.	5.6	17
12	Organic THz Generators: Xâ€Shaped Alignment of Chromophores: Potential Alternative for Efficient Organic Terahertz Generators (Advanced Optical Materials 9/2020). Advanced Optical Materials, 2020, 8, 2070036.	3.6	0
13	Xâ€Shaped Alignment of Chromophores: Potential Alternative for Efficient Organic Terahertz Generators. Advanced Optical Materials, 2020, 8, 1901921.	3.6	19
14	Wideâ€Bandgap Organic Crystals: Enhanced Opticalâ€ŧoâ€Terahertz Nonlinear Frequency Conversion at Nearâ€Infrared Pumping. Advanced Optical Materials, 2020, 8, 1902099.	3.6	15
15	Molecular salt crystals with bis(head-to-tail) interionic complementary assembly for efficient organic THz generators. Journal of Materials Chemistry C, 2020, 8, 10078-10085.	2.7	13
16	Organic Ïfâ€Hole Containing Crystals with Enhanced Nonlinear Optical Response and Efficient Opticalâ€toâ€THz Frequency Conversion. Advanced Optical Materials, 2020, 8, 1901840.	3.6	17
17	MHz-repetition-rate, sub-mW, multi-octave THz wave generation in HMQ-TMS. Optics Express, 2020, 28, 9631.	1.7	16
18	Generation of strong-field spectrally tunable terahertz pulses. Optics Express, 2020, 28, 33921.	1.7	16

#	Article	IF	Citations
19	Enhancing the Efficacy of Collinear Optical Rectification for Broadband THz Radiation at MHz Repetition Rates. , 2020, , .		O
20	Ultrafast laser spectral reshaping and carrier-frequency control by intense terahertz fields in electro-optic materials. , 2020, , .		0
21	Milliwatt-level multi-MHz THz wave generation in the organic crystal HMQTMS with a compressed fiber laser. , 2020, , .		0
22	Efficient Gapâ€Free Broadband Terahertz Generators Based on New Organic Quinolinium Single Crystals. Advanced Optical Materials, 2019, 7, 1900953.	3.6	14
23	DSTMS-Based Ultrabroadband Terahertz Time-Domain Spectroscopy. , 2019, , .		2
24	Fluorinated Organic Electroâ€Optic Quinolinium Crystals for THz Wave Generation. Advanced Optical Materials, 2019, 7, 1801495.	3.6	12
25	Organic Crystals for THz Photonics. Applied Sciences (Switzerland), 2019, 9, 882.	1.3	129
26	Molecular crystals and thin films for photonics. , 2019, , 177-210.		1
27	Terahertz Time-Domain Spectroscopy up to 20 THz Based on Organic Electro-Optic Crystals. , 2019, , .		0
28	Supercontinuum generation in OHQ-N2S organic crystal driven by intense terahertz fields. Optics Letters, 2019, 44, 4881.	1.7	5
29	Single Crystals Based on Hydrogenâ€Bonding Mediated Cation–Anion Assembly with Extremely Large Optical Nonlinearity and Their Application for Intense THz Wave Generation. Advanced Optical Materials, 2018, 6, 1701258.	3.6	24
30	New Class of Efficient Terahertz Generators: Effective Terahertz Spectral Filling by Complementary Tandem Configuration of Nonlinear Organic Crystals. Advanced Functional Materials, 2018, 28, 1707195.	7.8	17
31	Efficient Opticalâ€toâ€THz Conversion Organic Crystals with Simultaneous Electron Withdrawing and Donating Halogen Substituents. Advanced Optical Materials, 2018, 6, 1700930.	3.6	27
32	Organic Threeâ€Component Single Crystals with Pseudoâ€Isomorphic Cocrystallization for Nonlinear Optics and THz Photonics. Advanced Functional Materials, 2018, 28, 1805257.	7.8	28
33	Yellowâ€Colored Electroâ€Optic Crystals as Intense Terahertz Wave Sources. Advanced Functional Materials, 2018, 28, 1801143.	7.8	32
34	Generation of high-field terahertz pulses in an HMQ-TMS organic crystal pumped by an ytterbium laser at 1030 nm. Optics Express, 2018, 26, 2509.	1.7	23
35	Nonlinear Optical Salt Crystals: Single Crystals Based on Hydrogen-Bonding Mediated Cation-Anion Assembly with Extremely Large Optical Nonlinearity and Their Application for Intense THz Wave Generation (Advanced Optical Materials 10/2018). Advanced Optical Materials, 2018, 6, 1870039.	3.6	0
36	New Electroâ€Optic Salt Crystals for Efficient Terahertz Wave Generation by Direct Pumping at Ti:Sapphire Wavelength. Advanced Optical Materials, 2017, 5, 1600758.	3.6	26

#	Article	IF	Citations
37	Terahertz Phonon Mode Engineering of Highly Efficient Organic Terahertz Generators. Advanced Functional Materials, 2017, 27, 1605583.	7.8	38
38	Nonlinear Optics: New Electroâ€Optic Salt Crystals for Efficient Terahertz Wave Generation by Direct Pumping at Ti:Sapphire Wavelength (Advanced Optical Materials 5/2017). Advanced Optical Materials, 2017, 5, .	3.6	0
39	Benzothiazolium Single Crystals: A New Class of Nonlinear Optical Crystals with Efficient THz Wave Generation. Advanced Materials, 2017, 29, 1701748.	11.1	64
40	Optical Crystals: Benzothiazolium Single Crystals: A New Class of Nonlinear Optical Crystals with Efficient THz Wave Generation (Adv. Mater. 30/2017). Advanced Materials, 2017, 29, .	11.1	1
41	Quinolinium single crystals with a high optical nonlinearity and unusual out-of-plane polar axis. Journal of Materials Chemistry C, 2017, 5, 12602-12609.	2.7	11
42	Complementary tandem configuration of nonlinear organic crystals for efficient terahertz spectral filling. , $2017, , .$		0
43	Multi-functional supramolecular building blocks with hydroxy piperidino groups: new opportunities for developing nonlinear optical ionic crystals. CrystEngComm, 2016, 18, 5832-5841.	1.3	14
44	Silicon High-Speed Modulators., 2016,, 278-301.		3
45	Stereoselective Inhibitors Based on Nonpolar Hydrocarbons for Polar Organic Crystals. Crystal Growth and Design, 2016, 16, 6514-6521.	1.4	2
46	Terahertz Phonon Modes of Highly Efficient Electro-optic Phenyltriene OH1 Crystals. Journal of Physical Chemistry C, 2016, 120, 24360-24369.	1.5	12
47	Recent progress in acentric core structures for highly efficient nonlinear optical crystals and their supramolecular interactions and terahertz applications. CrystEngComm, 2016, 18, 7180-7203.	1.3	76
48	In Situ Tailor-Made Additives for Molecular Crystals: A Simple Route to Morphological Crystal Engineering. Crystal Growth and Design, 2016, 16, 3555-3561.	1.4	14
49	Electro-optic crystals grown in confined geometry with optimal crystal characteristics for THz photonic applications. CrystEngComm, 2016, 18, 7311-7318.	1.3	15
50	Quinolinium-based organic electro-optic crystals: Crystal characteristics in solvent mixtures and optical properties in the terahertz range. Materials Chemistry and Physics, 2016, 169, 62-70.	2.0	9
51	Electrooptics: New Acentric Core Structure for Organic Electrooptic Crystals Optimal for Efficient Optical-to-THz Conversion (Advanced Optical Materials 6/2015). Advanced Optical Materials, 2015, 3, 844-844.	3.6	3
52	Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap. Scientific Reports, 2015, 5, 14394.	1.6	53
53	Organic ionic electro-optic crystals grown by specific interactions on templates for THz wave photonics. CrystEngComm, 2015, 17, 4781-4786.	1.3	6
54	New Acentric Core Structure for Organic Electrooptic Crystals Optimal for Efficient Opticalâ€toâ€THz Conversion. Advanced Optical Materials, 2015, 3, 756-762.	3.6	58

#	Article	IF	CITATIONS
55	First-Principles Calculation of Terahertz Absorption with Dispersion Correction of 2,2′-Bithiophene as Model Compound. Journal of Physical Chemistry C, 2015, 119, 12598-12607.	1.5	15
56	Organic styryl quinolinium crystal with aromatic anion bearing electron-rich vinyl group. Journal of Molecular Structure, 2015, 1100, 359-365.	1.8	10
57	Phonon Modes of Organic Electro-Optic Molecular Crystals for Terahertz Photonics. Journal of Physical Chemistry C, 2015, 119, 10031-10039.	1.5	20
58	New phenolic N-methylquinolinium single crystals for second-order nonlinear optics. Optical Materials, 2015, 45, 136-140.	1.7	18
59	High efficiency THz generation in DSTMS, DAST and OH1 pumped by Cr:forsterite laser. Optics Express, 2015, 23, 4573.	1.7	199
60	Engineering of Organic Chromophores with Large Second-Order Optical Nonlinearity and Superior Crystal Growth Ability. Crystal Growth and Design, 2015, 15, 5560-5567.	1.4	30
61	Running electric field gratings for detection of coherent radiation. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1078.	0.9	11
62	N-Methylquinolinium derivatives for photonic applications: Enhancement of electron-withdrawing character beyond that of the widely-used N-methylpyridinium. Dyes and Pigments, 2015, 113, 8-17.	2.0	39
63	Nonlinear optical infrared and terahertz frequency conversion. , 2015, , 228-249.		2
64	Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1. Applied Physics Letters, 2014, 105, .	1.5	71
65	Terahertz emission in organic crystals pumped by conventional laser wavelength. Proceedings of SPIE, 2014, , .	0.8	2
66	Origin of Solubility Behavior of Polar π-Conjugated Crystals in Mixed Solvent Systems. Crystal Growth and Design, 2014, 14, 6024-6032.	1.4	17
67	Electro-Optic Organic Crystal Silicon High-Speed Modulator. IEEE Photonics Journal, 2014, 6, 1-9.	1.0	23
68	High-power Broadband Organic THz Generator. Scientific Reports, 2013, 3, 3200.	1.6	125
69	Crystal Engineering of Acentric Styryl Quinolinium Crystals with Strongly Hydrogen-Bonded Phenolic Anions. Crystal Growth and Design, 2013, 13, 5085-5091.	1.4	23
70	Broadband THz-wave generation with organic crystals OHI and DSTMS. , 2013, , .		4
71	High-speed, low-power optical modulators in silicon. , 2013, , .		3
72	Polar crystals in imines of 4-hydroxybenzohydrazide: a comparison between racemic and enantiomorphic crystals. CrystEngComm, 2013, 15, 3318.	1.3	15

#	Article	IF	CITATIONS
73	Unusual Twisting and Bending of Phenyltriene with Methylthiolated Biphenyl Sulfane Group in the Crystalline State. Crystal Growth and Design, 2013, 13, 1014-1022.	1.4	5
74	New quiolinium polymorph with optimal packing for maximal off-diagonal nonlinear optical response. Dyes and Pigments, 2013, 96, 435-439.	2.0	9
75	High-energy terahertz pulses from organic crystals: DAST and DSTMS pumped at Ti:sapphire wavelength. Optics Letters, 2013, 38, 5106.	1.7	55
76	Molecular crystals and crystalline thin films for photonics. , 2013, , 190-215.		0
77	Silicon-Organic Hybrid Electro-Optical Devices. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 114-126.	1.9	134
78	Tunable narrowband THz source (1& $\#$ x2013;20 THz) based on organic crystals DSTMS and OH1., 2013, , .		2
79	Silicon-organic hybrid fabrication platform for integrated circuits. , 2012, , .		O
80	Co-crystal structure selection of nonlinear optical analogue polyenes. CrystEngComm, 2012, 14, 4306.	1.3	19
81	Rotational Isomerism of Phenylthiolated Chromophores with Large Variation of Optical Nonlinearity. Journal of Physical Chemistry C, 2012, 116, 25034-25043.	1.5	5
82	Control of Nucleation of Organic Electrooptic Phenolic Polyene Crystals by Highly Polar Liquid Additive. Crystal Growth and Design, 2012, 12, 495-498.	1.4	8
83	Effect of ionic organic additives for the growth of polyene crystals synthesized by Knoevenagel condensations. CrystEngComm, 2012, 14, 1045-1048.	1.3	8
84	New acentric quinolinium crystal with high order parameter for nonlinear optical and electro-optic applications. CrystEngComm, 2012, 14, 3633.	1.3	20
85	New Thiolated Nitrophenylhydrazone Crystals for Nonlinear Optics. Crystal Growth and Design, 2012, 12, 313-319.	1.4	13
86	A series of compounds forming polar crystals and showing single-crystal-to-single-crystal transitions between polar phases. CrystEngComm, 2012, 14, 2645.	1.3	45
87	A new stilbazolium salt with perfectly aligned chromophores for second-order nonlinear optics: 4-N,N-Dimethylamino-4′-N′-methyl-stilbazolium 3-carboxy-4-hydroxybenzenesulfonate. Dyes and Pigments, 2012, 94, 120-126.	2.0	39
88	Highly Efficient Organic THz Generator Pumped at Nearâ€Infrared: Quinolinium Single Crystals. Advanced Functional Materials, 2012, 22, 200-209.	7.8	103
89	An entire class of compounds forming polar crystals and showing single-crystal-to-single-crystal transitions between polar phases. Acta Crystallographica Section A: Foundations and Advances, 2012, 68, s71-s71.	0.3	1
90	Acentric nonlinear optical N-benzyl stilbazolium crystals with high environmental stability and enhanced molecular nonlinearity in solid state. CrystEngComm, 2011, 13, 444-451.	1.3	80

#	Article	IF	Citations
91	4-Nitrophenylhydrazone Crystals with Large Quadratic Nonlinear Optical Response by Optimal Molecular Packing. Crystal Growth and Design, 2011, 11, 3049-3055.	1.4	17
92	Quantum Chemical Evaluation of Ionic Nonlinear Optical Chromophores and Crystals Considering the Counteranion Effects. Journal of Physical Chemistry C, 2011, 115, 23535-23542.	1.5	7
93	Selective Growth of Highly Efficient Electrooptic Stilbazolium Crystals by Sequential Crystal Growth in Different Solvents. Crystal Growth and Design, 2011, 11, 3060-3064.	1.4	13
94	Phenolic Polyene Crystals with Tailored Physical Properties and Very Large Nonlinear Optical Response. Chemistry of Materials, 2011, 23, 239-246.	3.2	36
95	Quasi-epitaxial single-crystalline organic oh 1 films with high electro-optic activity on inorganic structures for large-scale photonic integration. , 2011 , , .		0
96	An entire class of new compounds forming polar crystals. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C358-C359.	0.3	1
97	Integrated electro-optic devices of melt-processable single-crystalline organic films. Proceedings of SPIE, 2010, , .	0.8	1
98	The influence of pyrrole linked to the π-conjugated polyene on crystal characteristics and polymorphism. Dyes and Pigments, 2010, 86, 149-154.	2.0	9
99	First hyperpolarizability orientation in asymmetric pyrrole-based polyene chromophores. Dyes and Pigments, 2010, 85, 162-170.	2.0	40
100	Hybrid organic crystal/silicon-on-insulator integrated electro-optic modulators. , 2010, , .		3
101	Organic electro-optic single crystalline films for integrated optics. , 2010, , .		2
102	Optical phase conjugation of picosecond pulses at 106 $\hat{l}\frac{1}{4}$ m in Sn_2P_2S_6:Te for wavefront correction in high-power Nd-doped amplifier systems. Optics Express, 2010, 18, 87.	1.7	10
103	Crystal Growth and Morphology Control of OH1 Organic Electrooptic Crystals. Crystal Growth and Design, 2010, 10, 1552-1558.	1.4	71
104	Organic electro-optic crystalline materials for highly integrated photonic circuits. , 2010, , .		0
105	Determining negative sequence currents of turbine generator rotors., 2009,,.		11
106	Optical phase conjugation of ps pulses at 1.06 µm in $Sn<\inf>2P<\inf>2SSS6:Te for abberation corrections of high-power Nd-doped amplifiers. , 2009, , .$		0
107	Electro-optic modulation in high-efficiency crystalline OH1 optical waveguides. , 2009, , .		1
108	High Efficiency THz Pulse Generation in New Stilbazolium Salts. , 2009, , .		0

#	Article	IF	Citations
109	High efficiency terahertz generation and detection in the organic nonlinear optical crystal OH1., 2009,,.		O
110	Electron–phonon coupling and vibrational modes contributing to linear electroâ€optic effect of the efficient NLO chromophore 4â€(<i>N</i> , <i>N</i> ,â€dimethylamino)â€ <i>N</i> ,600, 100, 100, 100, 100, 100, 100, 100,	natie2	48
111	Large-Area Organic Electro-optic Single Crystalline Thin Films Grown by Evaporation-Induced Local Supersaturation with Surface Interactions. Crystal Growth and Design, 2009, 9, 2512-2516.	1.4	26
112	Thickness Control of Highly Efficient Organic Electro-Optic Phenolic Polyene Crystals by Metal Acetates. Crystal Growth and Design, 2009, 9, 4269-4272.	1.4	11
113	Photorefractive waveguides in He^+ implanted pure and Te-doped Sn_2P_2S_6. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 444.	0.9	3
114	Electro-optic tuning and modulation of single-crystalline organic microring resonators. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 1103.	0.9	22
115	Fast dynamic waveguides and waveguide arrays in photorefractive Sn_2P_2S_6 induced by visible light. Optics Express, 2009, 17, 379.	1.7	9
116	Optical Nonlinearities and Molecular Conformations in Thiophene-Based Hydrazone Crystals. Journal of Physical Chemistry C, 2009, 113, 15405-15411.	1.5	16
117	Large-Size Pyrrolidine-Based Polyene Single Crystals Suitable for Terahertz Wave Generation. Crystal Growth and Design, 2009, 9, 5003-5005.	1.4	15
118	Influence of phenolic hydroxyl groups on second-order optical nonlinearity at an example of 2,4- and 3,4-dihydroxyl hydrazone isomorphic crystals. Journal of Chemical Physics, 2009, 130, 134708.	1.2	30
119	Crystal engineering by eliminating weak hydrogen bonding sites in phenolic polyene nonlinear optical crystals. CrystEngComm, 2009, 11, 1541.	1.3	24
120	Optical waveguides and integrated electro-optic modulators based on highly-efficient organic nonlinear optical crystal OH1. , 2009, , .		0
121	Single-crystalline organic electro-optic microring filters and modulators. , 2009, , .		0
122	Organic Electro-Optic Single-Crystalline Waveguide Modulators, Microresonators and Nanowires Fabricated by Melt Capillary Growth. , 2009, , .		0
123	Organic Phenolic Configurationally Locked Polyene Single Crystals for Electroâ€optic and Terahertz Wave Applications. Advanced Functional Materials, 2008, 18, 3242-3250.	7.8	142
124	Organic Electroâ€optic Single―Crystalline Thin Films Grown Directly on Modified Amorphous Substrates. Advanced Materials, 2008, 20, 543-545.	11.1	23
125	New nonlinear optical polyamides: Influence of binding mode of side-chains and rigidity of main-chains on temporal stability. European Polymer Journal, 2008, 44, 2219-2224.	2.6	4
126	Photonic Applications With the Organic Nonlinear Optical Crystal DAST. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1298-1311.	1.9	227

#	Article	IF	CITATIONS
127	Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials. Journal of Chemical Physics, 2008, 128, 124713.	1.2	46
128	Configurationally locked, phenolic polyene organic crystal 2-{3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene}malononitrile: linear and nonlinear optical properties. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1678.	0.9	73
129	Extremely large nonresonant second-order nonlinear optical response in crystals of the stilbazolium salt DAPSH. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1786.	0.9	42
130	Electro-optic Charon polymeric microring modulators. Optics Express, 2008, 16, 613.	1.7	35
131	Electro-optic and nonlinear optical properties of ion implanted waveguides in organic crystals. Optics Express, 2008, 16, 731.	1.7	27
132	Electro-optic single-crystalline organic waveguides and nanowires grown from the melt. Optics Express, 2008, 16, 11310.	1.7	36
133	Double phase conjugate mirror using Sn_2P_2S_6 for injection locking of a laser diode bar. Optics Express, 2008, 16, 15415.	1.7	10
134	Fabrication and phase modulation in organic single-crystalline configurationally locked, phenolic polyene OH1 waveguides. Optics Express, 2008, 16, 15903.	1.7	20
135	A hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection. Optics Express, 2008, 16, 16496.	1.7	149
136	Light deflection and modulation through dynamic evolution of photoinduced waveguides. Optics Express, 2008, 16, 16646.	1.7	6
137	Pyrrole-Based Hydrazone Organic Nonlinear Optical Crystals and Their Polymorphs. Crystal Growth and Design, 2008, 8, 4021-4025.	1.4	40
138	Crystal Growth of DAST. Crystal Growth and Design, 2008, 8, 4173-4184.	1.4	102
139	Highly Nonlinear Optical Configurationally Locked Triene Crystals Based on 3,5-Dimethyl-2-cyclohexen-1-one. Journal of Physical Chemistry C, 2008, 112, 7846-7852.	1.5	57
140	Electro-optical microring resonators in epitaxial crystalline organic and ion sliced inorganic materials. , 2008, , .		0
141	Direct electron-beam structuring of optical waveguides in organic electro-optic crystals. , 2008, , .		0
142	Photorefractive two-wave mixing in Sn <inf>2</inf> S <inf>6</inf> :Te at 1.55 & amp;#x03BC;m., 2008,,.		0
143	Electro-Optic polymer microring resonators based on Charon coupler design. , 2008, , .		0
144	New Organic Salts for Electro-optics and THz Generation. , 2007, , .		0

#	Article	IF	Citations
145	Optical waveguides in the highly nonlinear optical organic crystal DAST by ion implantation and e-beam structuring. , 2007, , .		О
146	High-quality organic electro-optic single crystalline thin films for integrated optics based on configurationally locked polyene. , 2007, , .		0
147	Two-step photolithographic technique for laterally coupled hybrid polymer microring resonators. , 2007, , .		0
148	High-speed photorefraction at telecommunication wavelength 155 \hat{l} 4m in Sn_2P_2S_6:Te. Optics Letters, 2007, 32, 3230.	1.7	24
149	Tailoring of infrared photorefractive properties of Sn_2P_2S_6 crystals by Te and Sb doping. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 1535.	0.9	59
150	Photostability studies of π-conjugated chromophores with resonant and nonresonant light excitation for long-life polymeric telecommunication devices. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 2199.	0.9	37
151	Linear and nonlinear optical properties of the organic crystal DSTMS. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 2556.	0.9	105
152	Ion implanted optical waveguides in nonlinear optical organic crystal. Optics Express, 2007, 15, 629.	1.7	26
153	Direct electron beam writing of channel waveguides in nonlinear optical organic crystals. Optics Express, 2007, 15, 16828.	1.7	38
154	Molecular Engineering of Stilbazolium Derivatives for Second-Order Nonlinear Optics. Chemistry of Materials, 2007, 19, 3512-3518.	3.2	107
155	New Organic Nonlinear Optical Verbenone-Based Triene Crystal for Terahertz Applications. Crystal Growth and Design, 2007, 7, 2517-2521.	1.4	28
156	Synthesis, Crystal Structure, and Second-Order Nonlinear Optical Properties of New Stilbazolium Salts. Crystal Growth and Design, 2007, 7, 83-86.	1.4	46
157	Polymorphism, crystal growth and characterization of an organic nonlinear optical material: DAPSH. CrystEngComm, 2007, 9, 772.	1.3	36
158	High-Quality Organic Single Crystalline Thin Films for Nonlinear Optical Applications by Vapor Growth. Crystal Growth and Design, 2007, 7, 402-405.	1.4	27
159	New Organic Nonlinear Optical Polyene Crystals and Their Unusual Phase Transitions. Advanced Functional Materials, 2007, 17, 1750-1756.	7.8	57
160	Largeâ€Size Bulk and Thinâ€Film Stilbazoliumâ€Salt Single Crystals for Nonlinear Optics and THz Generation. Advanced Functional Materials, 2007, 17, 2018-2023.	7.8	231
161	Polar ordering of linear rod-like polyamide with different linking structure of nonlinear optical chromophores. Optical Materials, 2007, 29, 833-839.	1.7	3
162	Photorefractive Effects in Sn2P2S6. , 2007, , 327-362.		22

#	Article	IF	Citations
163	Light-Induced Dynamic and Quasi-Fixed Waveguides in Mg-doped Near-Stoichiometric LiTaO3., 2007,,.		O
164	Photorefractive Properties and Applications of Doped Sn2P2S6 Crystals in the Near Infrared., 2007,,.		0
165	Organic Photorefractive Materials Based on Mesophase Photoconductive Polymers., 2007,,.		0
166	<title>Enhanced near-infrared photorefractive properties of Te-doped Sn<formula><inf><roman>2</roman></inf></formula>P<formula><inf><roman>2</roman></inf></formula>S< , 2006, , .</td><td>formula><</td><td>:inf> <roman></td></tr><tr><td>167</td><td>Backward beam fanning in organic photorefractive devices. Applied Physics Letters, 2006, 89, 021905.</td><td>1.5</td><td>4</td></tr><tr><td>168</td><td>High-finesse laterally coupled organic-inorganic hybrid polymer microring resonators for VLSI photonics. IEEE Photonics Technology Letters, 2006, 18, 865-867.</td><td>1.3</td><td>24</td></tr><tr><td>169</td><td>Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity. Journal of Materials Chemistry, 2006, 16, 2839-2842.</td><td>6.7</td><td>121</td></tr><tr><td>170</td><td>Organic Nonlinear Optical Crystals Based on Configurationally Locked Polyene for Melt Growth. Chemistry of Materials, 2006, 18, 4049-4054.</td><td>3.2</td><td>105</td></tr><tr><td>171</td><td>Te-doped Sn<inf>2</inf>P<inf>2</inf>S<inf>6</inf>: A new material for fast photorefractive applications at 1.06 & amp; #x03BC;m., 2006,,.</td><td></td><td>O</td></tr><tr><td>172</td><td>Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 276.</td><td>0.9</td><td>34</td></tr><tr><td>173</td><td>Interband photorefraction in Sn_2P_2S_6 at visible wavelengths. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1620.</td><td>0.9</td><td>10</td></tr><tr><td>174</td><td>Optical waveguides in Sn2P2S6 by low fluence MeV He+ ion implantation. Optics Express, 2006, 14, 2344.</td><td>1.7</td><td>10</td></tr><tr><td>175</td><td>Deep UV light induced, fast reconfigurable and fixed waveguides in Mg doped LiTaO3. Optics Express, 2006, 14, 8278.</td><td>1.7</td><td>16</td></tr><tr><td>176</td><td>Morphology and Polymorphism Control of Organic Polyene Crystals by Tailor-made Auxiliaries. Crystal Growth and Design, 2006, 6, 2327-2332.</td><td>1.4</td><td>38</td></tr><tr><td>177</td><td><title>Holographic gratings in pure and Mg-doped near-stoichiometric
LiTaO<formula><inf><roman>3</roman></inf></formula> induced by deep-ultraviolet light</title> ., 2006,,.		1
178	Determination of the absorption constant in the interband region by photocurrent measurements. Applied Physics B: Lasers and Optics, 2006, 83, 115-119.	1.1	14
179	Nonlinear optical co-crystal of analogous polyene chromophores with tailored physical properties. Chemical Communications, 2006, , 3729-3731.	2.2	22
180	Layered photoconductive polymers: Anisotropic morphology and correlation with photorefractive reflection grating response. Journal of Chemical Physics, 2006, 124, 104705.	1.2	7

#	Article	IF	CITATIONS
181	OpticalWaveguides in Sn <inf>2</inf> P <inf>2</inf> S <inf>6</inf> by low fluence MeV He ⁺ ion implantation. , 2006, , .		O
182	High performance mesophase photorefractive polymers in transmission and reflection grating geometry. , 2006, , .		0
183	Optical waveguides in the highly nonlinear optical organic crystal DAST produced by ion implantation and fs ablation. , 2006, , .		0
184	Nematic-like mesophase photoconductive polymer for photorefractive applications. Polymer, 2005, 46, 10301-10310.	1.8	9
185	Synthesis and Crystal Growth of Stilbazolium Derivatives for Second-Order Nonlinear Optics. Advanced Functional Materials, 2005, 15, 1072-1076.	7.8	124
186	High performance reflection gratings in nematiclike photorefractive polymers. Applied Physics Letters, 2005, 87, 121910.	1.5	3
187	Sn2P2S6Crystals for Fast Near-Infrared Photorefraction. Ferroelectrics, 2005, 318, 89-94.	0.3	3
188	Wavelength dependence of visible and near-infrared photorefraction and phase conjugation in Sn_2P_2S_6. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 2459.	0.9	41
189	Nonlinear optical coefficients and phase-matching conditions in Sn _{P_{P₂S₆. Optics Express, 2005, 13, 3765.}}	1.7	29
190	Self Pumped Optical Phase Conjugation at 1.06 µm in Te-doped Sn2P2S6. Optics Express, 2005, 13, 9890.	1.7	23
191	Structural transitions in holographic polymer-dispersed liquid crystals. Physical Review E, 2004, 69, 051703.	0.8	29
192	GROWTH AND PLANAR STRUCTURING OF DAST CRYSTALS FOR OPTICAL APPLICATIONS. Journal of Nonlinear Optical Physics and Materials, 2004, 13, 559-567.	1.1	3
193	Nonlinear Organic Materials For VLSI Photonics. AIP Conference Proceedings, 2004, , .	0.3	11
194	Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4′-N′-methyl stilbazolium tosylate. Journal of Applied Physics, 2003, 94, 1356-1361.	1.1	41
195	Optimization of Non-Volatile Two-Color Holographic Recording in Near-Stoichiometric LiNbO3. Ferroelectrics, 2003, 296, 37-46.	0.3	0
196	Fast near-infrared self-pumped phase conjugation with photorefractive Sn_2P_2S_6. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 1241.	0.9	43
197	Sn2P2S6 a novel photorefractive material for photonic applications in the visible and infrared., 2003, 4829, 941.		0
198	Optimization of Non-Volatile Two-Color Holographic Recording in Near-Stoichiometric LiNbO 3. Ferroelectrics, 2003, 296, 37-46.	0.3	1

#	Article	IF	Citations
199	Enhanced photorefractive properties of Te-doped Sn2P2S6., 2003,,.		3
200	Sn2P2S6 crystals for fast near infrared photorefraction and phase conjugation., 2003,,.		0
201	Reduced space-charge fields in near-stoichiometric LiTaO 3 for blue, violet, and near-ultraviolet light beams. Applied Physics B: Lasers and Optics, 2002, 75, 891-894.	1.1	21
202	Material tensor parameters of LiNbO 3 relevant for electro- and elasto-optics. Applied Physics B: Lasers and Optics, 2002, 74, 407-414.	1.1	128
203	Electro-Optical Properties of Polymer Dispersed Liquid Crystal Transmission Gratings. Molecular Crystals and Liquid Crystals, 2002, 375, 455-465.	0.3	2
204	Characterization of holographic polymer dispersed liquid crystal transmission gratings. Journal of Applied Physics, 2001, 90, 3831-3837.	1.1	95
205	Localized Soft Mode at Optical-Field-Induced Fréedericksz Transition in a Nematic Liquid Crystal. Physical Review Letters, 1999, 82, 2103-2106.	2.9	9
206	Dynamic Light Scattering at Optical-Field-Induced Freedericksz Transition in Nematic Liquid Crystal. Molecular Crystals and Liquid Crystals, 1999, 330, 101-111.	0.3	0
207	Recovery of optical damage in near-stoichiometric LiTaO/sub 3/ crystal by UV light irradiation. , 0, , .		0
208	Fast near infrared photorefraction and phase conjugation in Sn/sub 2/P/sub 2/S/sub 6/., 0,,.		0
209	High performance photorefractive materials based on mesophase photoconductive polymer. , 0, , .		0
210	Growth of thin plates of DAST and thin films for nonlinear optic applications. , 0, , .		0
211	Photostructuring of the highly nonlinear optical organic crystal DAST for integrated optics., 0,,.		0
212	Synthesis, Crystal Growth and Characterization of Organic Nonlinear Optical Co-Crystal: 4-N, N-dimethylamino-4-N-methyl-stilbazolium (3-nitrobenzenesulfonate) _{0.6} l _{0.4} . Advanced Materials Research, 0, 760-762, 811-815.	0.3	1
213	Electrically poled organic materials and thermo-optic materials. , 0, , 118-174.		O