Zhe Yang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7541462/zhe-yang-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 2,726 28 52 h-index g-index citations papers 66 4,165 5.96 9.2 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
60	Carbon Nanotube Interlayer Enhances Water Permeance and Antifouling Performance of Nanofiltration Membranes: Mechanisms and Experimental Evidence <i>Environmental Science & Environmental Science & Technology</i> , 2022 ,	10.3	4
59	A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives. <i>Journal of Membrane Science</i> , 2022 , 641, 119871	9.6	28
58	High performance nanofiltration membrane using self-doping sulfonated polyaniline. <i>Journal of Membrane Science</i> , 2022 , 652, 120441	9.6	2
57	Nanofiltration for drinking water treatment: a review. <i>Frontiers of Chemical Science and Engineering</i> , 2021 , 1-18	4.5	8
56	Second interfacial polymerization decorating defects of TFC NF membrane formed by 1D nanochannels for improving separation performance. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 10, 106896	6.8	O
55	Novel Positively Charged Metal-Coordinated Nanofiltration Membrane for Lithium Recovery. <i>ACS Applied Materials & District Membrane for Lithium Recovery.</i> 13, 16906-16915	9.5	13
54	Does interfacial vaporization of organic solvent affect the structure and separation properties of polyamide RO membranes?. <i>Journal of Membrane Science</i> , 2021 , 625, 119173	9.6	12
53	Polyamide reverse osmosis membranes containing 1D nanochannels for enhanced water purification. <i>Journal of Membrane Science</i> , 2021 , 618, 118681	9.6	15
52	Stainless steel mesh supported thin-film composite nanofiltration membranes for enhanced permeability and regeneration potential. <i>Journal of Membrane Science</i> , 2021 , 618, 118738	9.6	11
51	Engineering a dual-functional sulfonated polyelectrolyte-silver nanoparticle complex on a polyamide reverse osmosis membrane for robust biofouling mitigation. <i>Journal of Membrane Science</i> , 2021 , 618, 118757	9.6	20
50	Recent advances in high-performance TFC membranes: A review of the functional interlayers. <i>Desalination</i> , 2021 , 500, 114869	10.3	28
49	Facile modification of aliphatic polyketone-based thin-film composite membrane for three-dimensional and comprehensive antifouling in active-layer-facing-draw-solution mode. <i>Journal of Applied Polymer Science</i> , 2021 , 138, 49711	2.9	2
48	Interlayered Forward Osmosis Membranes with TiCT MXene and Carbon Nanotubes for Enhanced Municipal Wastewater Concentration. <i>Environmental Science & Camp; Technology</i> , 2021 , 55, 13219-13230	10.3	4
47	The open membrane database: Synthesis Structure Derformance relationships of reverse osmosis membranes. <i>Journal of Membrane Science</i> , 2021 , 119927	9.6	12
46	Facile ZIFB nanocrystals interlayered solventEesistant thinEilm nanocomposite membranes for enhanced solvent permeance and rejection. <i>Journal of Membrane Science</i> , 2021 , 636, 119586	9.6	5
45	Tailored thin film nanocomposite membrane incorporated with Noria for simultaneously overcoming the permeability-selectivity trade-off and the membrane fouling in nanofiltration process. <i>Journal of Membrane Science</i> , 2021 , 640, 119863	9.6	8
44	Dissecting the Role of Substrate on the Morphology and Separation Properties of Thin Film Composite Polyamide Membranes: Seeing Is Believing. <i>Environmental Science & Environmental &</i>	10.3	47

43	Ultrathin polyamide nanofilm with an asymmetrical structure: A novel strategy to boost the permeance of reverse osmosis membranes. <i>Journal of Membrane Science</i> , 2020 , 612, 118402	9.6	5
42	A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications. <i>Environmental Science & Technology</i> , 2020 , 54, 15563-15583	10.3	89
41	Mechanistic Insights into the Role of Polydopamine Interlayer toward Improved Separation Performance of Polyamide Nanofiltration Membranes. <i>Environmental Science & Description</i> (2020), 54, 11611-11621	10.3	43
40	Toward tailoring nanofiltration performance of thin-film composite membranes: Novel insights into the role of poly(vinyl alcohol) coating positions. <i>Journal of Membrane Science</i> , 2020 , 614, 118526	9.6	26
39	Probing the Contributions of Interior and Exterior Channels of Nanofillers toward the Enhanced Separation Performance of a Thin-Film Nanocomposite Reverse Osmosis Membrane. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 766-772	11	19
38	Improved anti-biofouling performance of polyamide reverse osmosis membranes modified with a polyampholyte with effective carboxyl anion and quaternary ammonium cation ratio. <i>Journal of Membrane Science</i> , 2020 , 595, 117529	9.6	18
37	Highly permeable and highly selective ultrathin film composite polyamide membranes reinforced by reactable polymer chains. <i>Journal of Colloid and Interface Science</i> , 2019 , 552, 418-425	9.3	16
36	Antifouling Double-Skinned Forward Osmosis Membranes by Constructing Zwitterionic Brush-Decorated MWCNT Ultrathin Films. <i>ACS Applied Materials & Decorated Materials</i> , 11, 19462-1947	19.5	21
35	Confined nanobubbles shape the surface roughness structures of thin film composite polyamide desalination membranes. <i>Journal of Membrane Science</i> , 2019 , 582, 342-349	9.6	75
34	Research progress of photocatalysis based on highly dispersed titanium in mesoporous SiO2. <i>Chinese Chemical Letters</i> , 2019 , 30, 853-862	8.1	43
33	Hydrophilic Silver Nanoparticles Induce Selective Nanochannels in Thin Film Nanocomposite Polyamide Membranes. <i>Environmental Science & Environmental </i>	10.3	97
32	Effect of polymer structure modified on RO membrane surfaces via surface-initiated ATRP on dynamic biofouling behavior. <i>Journal of Membrane Science</i> , 2019 , 582, 111-119	9.6	19
31	Non-Polyamide Based Nanofiltration Membranes Using Green Metal-Organic Coordination Complexes: Implications for the Removal of Trace Organic Contaminants. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	52
30	The upper bound of thin-film composite (TFC) polyamide membranes for desalination. <i>Journal of Membrane Science</i> , 2019 , 590, 117297	9.6	180
29	An ultrathin in situ silicification layer developed by an electrostatic attraction force strategy for ultrahigh-performance oilwater emulsion separation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 24569-2	4 ¹² 382	38
28	Tuning roughness features of thin film composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling performance. <i>Journal of Colloid and Interface Science</i> , 2019 , 540, 382-388	9.3	75
27	Carbon nanotubes enhance permeability of ultrathin polyamide rejection layers. <i>Journal of Membrane Science</i> , 2019 , 570-571, 139-145	9.6	41
26	Fabrication of a novel and green thin-film composite membrane containing nanovoids for water purification. <i>Journal of Membrane Science</i> , 2019 , 570-571, 314-321	9.6	32

25	Polydopamine coating on a thin film composite forward osmosis membrane for enhanced mass transport and antifouling performance. <i>Journal of Membrane Science</i> , 2018 , 551, 234-242	9.6	84
24	Reactable substrate participating interfacial polymerization for thin film composite membranes with enhanced salt rejection performance. <i>Desalination</i> , 2018 , 436, 1-7	10.3	28
23	Nanofoaming of Polyamide Desalination Membranes To Tune Permeability and Selectivity. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 123-130	11	148
22	Interfacial Polymerization with Electrosprayed Microdroplets: Toward Controllable and Ultrathin Polyamide Membranes. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 117-122	11	75
21	Novel polyethyleneimine/TMC-based nanofiltration membrane prepared on a polydopamine coated substrate. <i>Frontiers of Chemical Science and Engineering</i> , 2018 , 12, 273-282	4.5	28
20	Zwitterionic polymer modification of polyamide reverse-osmosis membranes via surface amination and atom transfer radical polymerization for anti-biofouling. <i>Journal of Membrane Science</i> , 2018 , 550, 332-339	9.6	62
19	Novel Membranes and Membrane Materials 2018 , 201-221		1
18	Tannic Acid/Fe Nanoscaffold for Interfacial Polymerization: Toward Enhanced Nanofiltration Performance. <i>Environmental Science & Environmental Science</i>	10.3	162
17	Potable Water Reuse through Advanced Membrane Technology. <i>Environmental Science & Environmental Scien</i>	10.3	203
16	Preparation of nanocavity-contained thin film composite nanofiltration membranes with enhanced permeability and divalent to monovalent ion selectivity. <i>Desalination</i> , 2018 , 445, 115-122	10.3	50
15	Recent development of novel membranes for desalination. <i>Desalination</i> , 2018 , 434, 37-59	10.3	122
14	A highly selective surface coating for enhanced membrane rejection of endocrine disrupting compounds: Mechanistic insights and implications. <i>Water Research</i> , 2017 , 121, 197-203	12.5	55
13	Gravity-driven catalytic nanofibrous membranes prepared using a green template. <i>Journal of Membrane Science</i> , 2017 , 525, 298-303	9.6	32
12	A One-Step Rapid Assembly of Thin Film Coating Using Green Coordination Complexes for Enhanced Removal of Trace Organic Contaminants by Membranes. <i>Environmental Science & Enp. Technology</i> , 2017 , 51, 12638-12643	10.3	66
11	A novel thin-film nano-templated composite membrane with in situ silver nanoparticles loading: Separation performance enhancement and implications. <i>Journal of Membrane Science</i> , 2017 , 544, 351-3	35 8 6	58
10	A novel gravity-driven nanofibrous membrane for point-of-use water disinfection: polydopamine-induced in situ silver incorporation. <i>Scientific Reports</i> , 2017 , 7, 2334	4.9	35
9	Transmission Electron Microscopy (TEM) 2017 , 145-159		14
8	A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes. <i>Journal of Membrane Science</i> , 2017 , 525, 269-276	9.6	105

LIST OF PUBLICATIONS

7	Enhancing water flux of thin-film nanocomposite (TFN) membrane by incorporation of bimodal silica nanoparticles. <i>AIMS Environmental Science</i> , 2016 , 3, 185-198	1.9	19
6	A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles. <i>Separation and Purification Technology</i> , 2016 , 166, 230-239	8.3	125
5	In Situ Reduction of Silver by Polydopamine: A Novel Antimicrobial Modification of a Thin-Film Composite Polyamide Membrane. <i>Environmental Science & Environmental Science & </i>	10.3	131
4	Vapor-phase polymerization of high-performance thin-film composite membranes for nanofiltration. <i>AICHE Journal</i> ,e17517	3.6	1
3	High Permeance or High Selectivity? Optimization of System-Scale Nanofiltration Performance Constrained by the Upper Bound. <i>ACS ES&T Engineering</i> ,		5
2	Deciphering the Role of Amine Concentration on Polyamide Formation toward Enhanced RO Performance. <i>ACS ES&T Engineering</i> ,		2
1	Tweak in Puzzle: Tailoring Membrane Chemistry and Structure toward Targeted Removal of Organic Micropollutants for Water Reuse. <i>Environmental Science and Technology Letters</i> ,	11	4