Jin-Cheol Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7541366/publications.pdf Version: 2024-02-01

IIN-CHEOLKIM

#	Article	IF	CITATIONS
1	Recent Trends in Studies on Botanical Fungicides in Agriculture. Plant Pathology Journal, 2013, 29, 1-9.	1.7	186
2	Activity against plant pathogenic fungi of phomalactone isolated fromNigrospora sphaerica. Pest Management Science, 2001, 57, 554-559.	3.4	111
3	Diffusible and Volatile Antifungal Compounds Produced by an Antagonistic Bacillus velezensis G341 against Various Phytopathogenic Fungi. Plant Pathology Journal, 2017, 33, 488-498.	1.7	111
4	Some fungal endophytes from vegetable crops and their anti-oomycete activities against tomato late blight. Letters in Applied Microbiology, 2007, 44, 332-337.	2.2	80
5	Effects of chrysophanol, parietin, and nepodin of Rumex crispus on barley and cucumber powdery mildews. Crop Protection, 2004, 23, 1215-1221.	2.1	73
6	Heat shock protein 90 is required for sexual and asexual development, virulence, and heat shock response in Fusarium graminearum. Scientific Reports, 2016, 6, 28154.	3.3	70
7	Production of l - and d -lactic acid from waste Curcuma longa biomass through simultaneous saccharification and cofermentation. Bioresource Technology, 2013, 146, 35-43.	9.6	67
8	Antimicrobial Activities of Novel Mannosyl Lipids Isolated from the Biocontrol Fungus <i>Simplicillium lamellicola</i> BCP against Phytopathogenic Bacteria. Journal of Agricultural and Food Chemistry, 2014, 62, 3363-3370.	5.2	66
9	Nematicidal and Antifungal Activities of Annonaceous Acetogenins from <i>Annona squamosa</i> against Various Plant Pathogens. Journal of Agricultural and Food Chemistry, 2011, 59, 11160-11167.	5.2	65
10	Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid. PLoS ONE, 2016, 11, e0156230.	2.5	62
11	Functional characterization of cytochrome P450 monooxygenases in the cereal head blight fungus <scp><i>F</i></scp> <i>usarium graminearum</i> . Environmental Microbiology, 2017, 19, 2053-2067.	3.8	59
12	Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt. PLoS ONE, 2017, 12, e0181499.	2.5	55
13	Screening extracts of Achyranthes japonica and Rumex crispus for activity against various plant pathogenic fungi and control of powdery mildew. Pest Management Science, 2004, 60, 803-808.	3.4	54
14	Chemosensitization of Fusarium graminearum to Chemical Fungicides Using Cyclic Lipopeptides Produced by Bacillus amyloliquefaciens Strain JCK-12. Frontiers in Plant Science, 2017, 8, 2010.	3.6	49
15	Biological control of tomato bacterial wilt by oxydifficidin and difficidin-producing Bacillus methylotrophicus DR-08. Pesticide Biochemistry and Physiology, 2020, 163, 130-137.	3.6	46
16	Characterization of Bacillus amyloliquefaciens DA12 Showing Potent Antifungal Activity against Mycotoxigenic Fusarium Species. Plant Pathology Journal, 2017, 33, 499-507.	1.7	45
17	Suppression of pine wilt disease by an antibacterial agent, oxolinic acid. Pest Management Science, 2010, 66, 634-639.	3.4	44
18	Potent in Vivo Antifungal Activity against Powdery Mildews of Pregnane Glycosides from the Roots of Cynanchum wilfordii. Journal of Agricultural and Food Chemistry, 2011, 59, 12210-12216.	5.2	42

#	Article	IF	CITATIONS
19	Characterization and mechanisms of anti-influenza virus metabolites isolated from the Vietnamese medicinal plant Polygonum chinense. BMC Complementary and Alternative Medicine, 2017, 17, 162.	3.7	41
20	Nematicidal activity of grammicin produced by <i>Xylaria grammica</i> KCTC 13121BP against <i>Meloidogyne incognita</i> . Pest Management Science, 2018, 74, 384-391.	3.4	40
21	Nematicidal Activity of Kojic Acid Produced by Aspergillus oryzae against Meloidogyne incognita. Journal of Microbiology and Biotechnology, 2016, 26, 1383-1391.	2.1	39
22	In vitro antibacterial activity of selected medicinal plants traditionally used in Vietnam against human pathogenic bacteria. BMC Complementary and Alternative Medicine, 2015, 16, 32.	3.7	37
23	Nematicidal Activities of 4-Quinolone Alkaloids Isolated from the Aerial Part of <i>Triumfetta grandidens</i> against <i>Meloidogyne incognita</i> . Journal of Agricultural and Food Chemistry, 2015, 63, 68-74.	5.2	36
24	Transcription factor <scp>ART</scp> 1 mediates starch hydrolysis and mycotoxin production in <i>Fusarium graminearum</i> and <i>F. verticillioides</i> . Molecular Plant Pathology, 2016, 17, 755-768.	4.2	36
25	Induction of resistance against pine wilt disease caused by <i>Bursaphelenchus xylophilus</i> using selected pine endophytic bacteria. Plant Pathology, 2019, 68, 434-444.	2.4	36
26	Antifungal activity of sterols and dipsacus saponins isolated from Dipsacus asper roots against phytopathogenic fungi. Pesticide Biochemistry and Physiology, 2017, 141, 103-108.	3.6	34
27	MYT3, A Myb-Like Transcription Factor, Affects Fungal Development and Pathogenicity of Fusarium graminearum. PLoS ONE, 2014, 9, e94359.	2.5	33
28	Identification of novel compounds, oleanane- and ursane-type triterpene glycosides, from Trevesia palmata: their biocontrol activity against phytopathogenic fungi. Scientific Reports, 2018, 8, 14522.	3.3	32
29	Nematicidal activity of 5-iodoindole against root-knot nematodes. Pesticide Biochemistry and Physiology, 2020, 163, 76-83.	3.6	32
30	Nematicidal activity of verrucarin A and roridin A isolated from Myrothecium verrucaria against Meloidogyne incognita. Pesticide Biochemistry and Physiology, 2018, 148, 133-143.	3.6	31
31	Biological Control of Tomato Bacterial Wilt, Kimchi Cabbage Soft Rot, and Red Pepper Bacterial Leaf Spot Using Paenibacillus elgii JCK-5075. Frontiers in Plant Science, 2020, 11, 775.	3.6	31
32	Effect of Gallotannins Derived from <i>Sedum takesimense</i> on Tomato Bacterial Wilt. Plant Disease, 2013, 97, 1593-1598.	1.4	29
33	Alkaloids from <i>Piper nigrum</i> Exhibit Antiinflammatory Activity via Activating the Nrf2/HOÂ1 Pathway. Phytotherapy Research, 2017, 31, 663-670.	5.8	29
34	Production, Characterization, and Antioxidant Activities of an Exopolysaccharide Extracted from Spent Media Wastewater after <i>Leuconostoc mesenteroides</i> WiKim32 Fermentation. ACS Omega, 2021, 6, 8171-8178.	3.5	29
35	Antimicrobial efficacy of extracts and constituents fractionated from Rheum tanguticum Maxim. ex Balf. rhizomes against phytopathogenic fungi and bacteria. Industrial Crops and Products, 2017, 108, 442-450.	5.2	28
36	Effective approach to organic acid production from agricultural kimchi cabbage waste and its potential application. PLoS ONE, 2018, 13, e0207801.	2.5	28

#	Article	IF	CITATIONS
37	Antifungal activity of polyacetylenes isolated from Cirsium japonicum roots against various phytopathogenic fungi. Industrial Crops and Products, 2011, 34, 882-887.	5.2	27
38	Streptomyces sp. AN090126 as a Biocontrol Agent against Bacterial and Fungal Plant Diseases. Microorganisms, 2022, 10, 791.	3.6	27
39	Nematicidal and insecticidal activities of halogenated indoles. Scientific Reports, 2019, 9, 2010.	3.3	26
40	Control of rootâ€knot nematodes using <i>Waltheria indica</i> producing 4â€quinolone alkaloids. Pest Management Science, 2019, 75, 2264-2270.	3.4	24
41	Development of a Biofungicide Using a Mycoparasitic Fungus Simplicillium lamellicola BCP and Its Control Efficacy against Gray Mold Diseases of Tomato and Ginseng. Plant Pathology Journal, 2017, 33, 337-344.	1.7	24
42	Biological Control of Root-Knot Nematodes by Organic Acid-Producing Lactobacillus brevis WiKim0069 Isolated from Kimchi. Plant Pathology Journal, 2019, 35, 662-673.	1.7	24
43	Influence of Resistance-Inducing Chemical Elicitors against Pine Wilt Disease on the Rhizosphere Microbiome. Microorganisms, 2020, 8, 884.	3.6	22
44	Streptomyces sp. JCK-6131 Protects Plants Against Bacterial and Fungal Diseases via Two Mechanisms. Frontiers in Plant Science, 2021, 12, 726266.	3.6	22
45	Pyochelin isolated from Burkholderia arboris KRICT1 carried by pine wood nematodes exhibits phytotoxicity in pine callus. Nematology, 2011, 13, 521-528.	0.6	21
46	A novel transcription factor gene FHS1 is involved in the DNA damage response in Fusarium graminearum. Scientific Reports, 2016, 6, 21572.	3.3	20
47	Antimicrobial activities of an oxygenated cyclohexanone derivative isolated from <i>Amphirosellinia nigrospora </i> JS-1675 against various plant pathogenic bacteria and fungi. Journal of Applied Microbiology, 2019, 126, 894-904.	3.1	20
48	Structure and antifungal activity of pelgipeptins from Paenibacillus elgii against phytopathogenic fungi. Pesticide Biochemistry and Physiology, 2020, 163, 154-163.	3.6	19
49	Antibacterial activities of penicillic acid isolated from <i>Aspergillus persii</i> against various plant pathogenic bacteria. Letters in Applied Microbiology, 2016, 62, 488-493.	2.2	17
50	Control of root-knot nematodes by a mixture of maleic acid and copper sulfate. Applied Soil Ecology, 2019, 141, 61-68.	4.3	17
51	Nematicidal activity of malabaricones isolated from Myristica malabarica fruit rinds against Bursaphelenchus xylophilus. Nematology, 2008, 10, 801-807.	0.6	16
52	A Multifunctional and Possible Skin UV Protectant, (3R)-5-Hydroxymellein, Produced by an Endolichenic Fungus Isolated from Parmotrema austrosinense. Molecules, 2017, 22, 26.	3.8	14
53	Biorefining Process of Carbohydrate Feedstock (Agricultural Onion Waste) to Acetic Acid. ACS Omega, 2019, 4, 22438-22444.	3.5	14
54	Antibacterial Activity of Pharbitin, Isolated from the Seeds of Pharbitis nil, against Various Plant Pathogenic Bacteria. Journal of Microbiology and Biotechnology, 2017, 27, 1763-1772.	2.1	13

#	Article	IF	CITATIONS
55	Isolation and characterization of a novel metagenomic enzyme capable of degrading bacterial phytotoxin toxoflavin. PLoS ONE, 2018, 13, e0183893.	2.5	12
56	A Diketopiperazine, Cyclo-(L-Pro-L-Ile), Derived From Bacillus thuringiensis JCK-1233 Controls Pine Wilt Disease by Elicitation of Moderate Hypersensitive Reaction. Frontiers in Plant Science, 2020, 11, 1023.	3.6	12
57	Complete genome sequence of Bacillus velezensis G341, a strain with a broad inhibitory spectrum against plant pathogens. Journal of Biotechnology, 2015, 211, 97-98.	3.8	11
58	Comparative Transcriptome Analysis of Pine Trees Treated with Resistance-Inducing Substances against the Nematode Bursaphelenchus xylophilus. Genes, 2020, 11, 1000.	2.4	9
59	Response of Pine Rhizosphere Microbiota to Foliar Treatment with Resistance-Inducing Bacteria against Pine Wilt Disease. Microorganisms, 2021, 9, 688.	3.6	9
60	<i>In Vitro</i> and <i>In Vivo</i> Antibacterial Activity of Serratamid, a Novel Peptide–Polyketide Antibiotic Isolated from <i>Serratia plymuthica</i> C1, against Phytopathogenic Bacteria. Journal of Agricultural and Food Chemistry, 2021, 69, 5471-5480.	5.2	9
61	Optimization of Herbicidin A Production in Submerged Culture of Streptomyces scopuliridis M40. Journal of Microbiology and Biotechnology, 2017, 27, 947-955.	2.1	9
62	Sampling and Selection Factors that Enhance the Diversity of Microbial Collections: Application to Biopesticide Development. Plant Pathology Journal, 2013, 29, 144-153.	1.7	9
63	Identification, Characterization, and Efficacy Evaluation of Bacillus velezensis for Shot-Hole Disease Biocontrol in Flowering Cherry. Plant Pathology Journal, 2022, 38, 115-130.	1.7	9
64	Process development of oxalic acid production in submerged culture of Aspergillus niger F22 and its biocontrol efficacy against the root-knot nematode Meloidogyne incognita. Bioprocess and Biosystems Engineering, 2018, 41, 345-352.	3.4	8
65	Effect of Oxygen Supply on Surfactin Production and Sporulation in Submerged Culture of Bacillus subtilis Y9. Applied Sciences (Switzerland), 2018, 8, 1660.	2.5	8
66	Advanced strategy to produce insecticidal destruxins from lignocellulosic biomass Miscanthus. Biotechnology for Biofuels, 2019, 12, 188.	6.2	8
67	The Hsp90 Inhibitor, Monorden, Is a Promising Lead Compound for the Development of Novel Fungicides. Frontiers in Plant Science, 2020, 11, 371.	3.6	8
68	A Fungus-Inducible Pepper Carboxylesterase Exhibits Antifungal Activity by Decomposing the Outer Layer of Fungal Cell Walls. Molecular Plant-Microbe Interactions, 2018, 31, 505-515.	2.6	7
69	The FgNot3 Subunit of the Ccr4-Not Complex Regulates Vegetative Growth, Sporulation, and Virulence in Fusarium graminearum. PLoS ONE, 2016, 11, e0147481.	2.5	7
70	Characterization of a Soil Metagenome-Derived Gene Encoding Wax Ester Synthase. Journal of Microbiology and Biotechnology, 2016, 26, 248-254.	2.1	7
71	Systemic Acquired Resistance-Mediated Control of Pine Wilt Disease by Foliar Application With Methyl Salicylate. Frontiers in Plant Science, 2021, 12, 812414.	3.6	7
72	Biological Control Efficacy and Action Mechanism of Klebsiella pneumoniae JCK-2201 Producing Meso-2,3-Butanediol Against Tomato Bacterial Wilt. Frontiers in Microbiology, 0, 13, .	3.5	7

#	Article	IF	CITATIONS
73	Draft Genome Sequence of Amphirosellinia nigrospora JS-1675, an Endophytic Fungus from Pteris cretica. Microbiology Resource Announcements, 2019, 8, .	0.6	6
74	Nematicidal Activity of Cyclopiazonic Acid Derived From Penicillium commune Against Root-Knot Nematodes and Optimization of the Culture Fermentation Process. Frontiers in Microbiology, 2021, 12, 726504.	3.5	6
75	Dysbiosis in the Rhizosphere Microbiome of Standing Dead Korean Fir (Abies koreana). Plants, 2022, 11, 990.	3.5	6
76	Occurrence of Meloidogyne incognita Infecting Resistant Cultivars and Development of an Efficient Screening Method for Resistant Tomato to the Mi-virulent -virulent Nematode. Horticultural Science and Technology, 2014, 32, 217-226.	0.6	5
77	First Report of Epicoccum tobaicum Associated with Leaf Spot on Flowering Cherry in South Korea. Plant Disease, 2021, , .	1.4	4
78	Nonviral gene delivery using PAMAM dendrimer conjugated with the nuclear localization signal peptide derived from human papillomavirus type 11 E2 protein. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1140-1160.	3.5	4
79	Nematicidal Activity of Grammicin Biosynthesis Pathway Intermediates in Xylaria grammica KCTC 13121BP against Meloidogyne incognita. Molecules, 2021, 26, 4675.	3.8	4
80	Exogenous Bio-Based 2,3-Butanediols Enhanced Abiotic Stress Tolerance of Tomato and Turfgrass under Drought or Chilling Stress. Journal of Microbiology and Biotechnology, 2022, 32, 582-593.	2.1	4
81	In vitro and in vivo antimicrobial potential against various phytopathogens and chemical constituents of the aerial part of Rumex chinensis Campd. South African Journal of Botany, 2020, 133, 73-82.	2.5	3
82	Disease Control Efficacy of the Extract of Magnolia officinalis against Perilla and Zoysiagrass Rusts. Research in Plant Disease, 2013, 19, 45-48.	0.8	3
83	Deciphering the Relationship Between Cycloheximides Structures and Their Different Biological Activities. Frontiers in Microbiology, 2021, 12, 644853.	3.5	2
84	First Report of Shot-hole on Flowering Cherry Caused by Burkholderia contaminans and Pseudomonas syringae pv. syringae. Plant Disease, 2021, , PDIS03210547SC.	1.4	2
85	Synthesis and Characterization of Dual-Sensitive PAMAM Derivatives Conjugated with Enzyme Cleavable Peptides as Gene Carriers. Macromolecular Research, 2021, 29, 636-647.	2.4	2
86	Inhibition of Oomycetes by the Mixture of Maleic Acid and Copper Sulfate. Plant Disease, 2022, 106, 960-965.	1.4	2
87	7-Hydroxy-2-octenoic acid-ethyl ester mixture as an UV protectant secondary metabolite of an endolichenic fungus isolated from Menegazzia terebrata. Archives of Microbiology, 2022, 204, .	2.2	2
88	Optimization of <i>Agrobacterium tumefaciens</i> -Mediated Transformation of <i>Xylaria grammica</i> EL000614, an Endolichenic Fungus Producing Grammicin. Mycobiology, 2021, 49, 491-497.	1.7	1
89	Draft Genome Sequence of Aspergillus persii NIBRFGC000004109, Which Has Antibacterial Activity against Plant-Pathogenic Bacteria. Genome Announcements, 2017, 5, .	0.8	0
90	Draft Genome Sequence of <i>Xylaria grammica</i> EL000614, a Strain Producing Grammicin, a Potent Nematicidal Compound. Mycobiology, 2021, 49, 1-3.	1.7	0

#	Article	IF	CITATIONS
91	First Report of Rust Disease on Fringe Tree by Puccinia sp. and Its Alternative Host. Research in Plant Disease, 2020, 26, 179-182.	0.8	0