Siew Hwa Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7541292/publications.pdf

Version: 2024-02-01

30047 25770 12,624 160 54 108 citations h-index g-index papers 163 163 163 12968 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	In-situ measurement of humidity distribution and its effect on the performance of a proton exchange membrane fuel cell. Energy, 2022, 239, 122270.	4.5	29
2	MW cogenerated proton exchange membrane fuel cell combined heat and power system design for eco-neighborhoods in North China. International Journal of Hydrogen Energy, 2022, 47, 4033-4046.	3.8	19
3	Technoeconomic and environmental assessment of HyForce, a hydrogen-fuelled harbour tug. International Journal of Hydrogen Energy, 2022, 47, 6924-6935.	3.8	11
4	Performance enhancement in a H2/O2 PEMFC with dual-ejector recirculation. International Journal of Hydrogen Energy, 2022, 47, 12698-12710.	3.8	34
5	Decarbonizing Natural Gas: A Review of Catalytic Decomposition and Carbon Formation Mechanisms. Energies, 2022, 15, 2573.	1.6	9
6	Wet-air co-electrolysis in high-temperature solid oxide electrolysis cell for production of ammonia feedstock. International Journal of Hydrogen Energy, 2022, 47, 18577-18586.	3.8	3
7	The economics of power generation and energy storage via Solid Oxide Cell and ammonia. International Journal of Hydrogen Energy, 2022, 47, 26827-26841.	3.8	4
8	Feasibility assessment of a container ship applying ammonia cracker-integrated solid oxide fuel cell technology. International Journal of Hydrogen Energy, 2022, 47, 27166-27176.	3.8	24
9	Deficiency of hydrogen production in commercialized planar Ni-YSZ/YSZ/LSM-YSZ steam electrolysis cells. International Journal of Hydrogen Energy, 2022, 47, 23514-23519.	3.8	7
10	Technological and Engineering design of a megawatt proton exchange membrane fuel cell system. Energy, 2022, 257, 124728.	4.5	16
11	Non-aqueous solution synthesis of Pt-based nanostructures for fuel cell catalysts. Materials Today Energy, 2021, 19, 100616.	2.5	10
12	Applications of ejectors in proton exchange membrane fuel cells: A review. Fuel Processing Technology, 2021, 214, 106683.	3.7	29
13	Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (PEMFC): A review. Journal of Power Sources, 2021, 488, 229434.	4.0	174
14	Effect of gas purging on the performance of a proton exchange membrane fuel cell with deadâ€ended anode and cathode. International Journal of Energy Research, 2021, 45, 14813-14823.	2.2	9
15	Long-distance renewable hydrogen transmission via cables and pipelines. International Journal of Hydrogen Energy, 2021, 46, 18699-18718.	3.8	53
16	Transparent Bamboo with High Radiative Cooling Targeting Energy Savings., 2021, 3, 883-888.		30
17	Enhancing reactant mass transfer inside fuel cells to improve dynamic performance via intelligent hydrogen pressure control. Energy, 2021, 230, 120620.	4.5	14
18	Water distribution and performance variation in a transparent PEMFC with large active area. International Journal of Hydrogen Energy, 2021, 46, 38040-38050.	3.8	29

#	Article	IF	Citations
19	Performance enhancement in a proton exchange membrane fuel cell with a novel 3D flow field. Applied Thermal Engineering, 2020, 164, 114464.	3.0	104
20	Transient response of performance in a proton exchange membrane fuel cell under dynamic loading. Energy Conversion and Management, 2020, 226, 113492.	4.4	54
21	High Electrochemical Performance of Bi2WO6/Carbon Nano-Onion Composites as Electrode Materials for Pseudocapacitors. Frontiers in Chemistry, 2020, 8, 577.	1.8	11
22	Partial flooding and its effect on the performance of a proton exchange membrane fuel cell. Energy Conversion and Management, 2020, 207, 112537.	4.4	86
23	Evaluation criterion of different flow field patterns in a proton exchange membrane fuel cell. Energy Conversion and Management, 2020, 213, 112841.	4.4	90
24	Experimental investigation on the mechanism of variable fan speed control in Open cathode PEM fuel cell. International Journal of Hydrogen Energy, 2019, 44, 24017-24027.	3.8	55
25	Study of CO2 and H2O direct co-electrolysis in an electrolyte-supported solid oxide electrolysis cell by aqueous tape casting technique. International Journal of Hydrogen Energy, 2019, 44, 28939-28946.	3.8	14
26	The Profitability Estimation of a 100 MW Power-to-Gas Plant. Energy Procedia, 2019, 156, 310-314.	1.8	0
27	Fast identification of power change rate of PEM fuel cell based on data dimensionality reduction approach. International Journal of Hydrogen Energy, 2019, 44, 21101-21109.	3.8	8
28	Understanding the occurrence of the individual CO2 electrolysis during H2O-CO2 co-electrolysis in classic planar Ni-YSZ/YSZ/LSM-YSZ solid oxide cells. Electrochimica Acta, 2019, 318, 440-448.	2.6	10
29	Performance improvement in a proton exchange membrane fuel cell with separated coolant flow channels in the anode and cathode. Energy Conversion and Management, 2019, 187, 76-82.	4.4	28
30	Aqueous tape casting technique for the fabrication of Sc0.1Ce0·01Zr0·89O2+Δ ceramic for electrolyte-supported solid oxide fuel cell. International Journal of Hydrogen Energy, 2019, 44, 21110-21114.	3.8	19
31	Small signal modelling and control of high gain coupled inductor boost inverter for solid oxide fuel cell based power generation system. International Journal of Hydrogen Energy, 2019, 44, 21115-21126.	3.8	7
32	The economic feasibility study of a 100-MW Power-to-Gas plant. International Journal of Hydrogen Energy, 2019, 44, 20978-20986.	3.8	27
33	Enhancement of mass transfer in a proton exchange membrane fuel cell with blockage in the flow channel. Applied Thermal Engineering, 2019, 149, 1408-1418.	3.0	160
34	Modeling and multi-objective optimization of a stand-alone PV-hydrogen-retired EV battery hybrid energy system. Energy Conversion and Management, 2019, 181, 80-92.	4.4	108
35	Facile aqueous phase synthesis of Pd3Cu–B/C catalyst for enhanced glucose electrooxidation. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 139-146.	2.7	34
36	Activation and failure mechanism of La0.6Sr0.4Co0.2Fe0.8O3â~δair electrode in solid oxide electrolyzer cells under high-current electrolysis. International Journal of Hydrogen Energy, 2018, 43, 5437-5450.	3.8	45

#	Article	IF	Citations
37	Emerging Thermalâ€Responsive Materials and Integrated Techniques Targeting the Energyâ€Efficient Smart Window Application. Advanced Functional Materials, 2018, 28, 1800113.	7.8	322
38	Performance degradation of a proton exchange membrane fuel cell with dead-ended cathode and anode. Applied Thermal Engineering, 2018, 132, 80-86.	3.0	57
39	overflow="scroll"> <mml:mrow><mml:mi mathvariant="normal">L</mml:mi><mml:msub><mml:mi mathvariant="normal">a</mml:mi><mml:mrow><mml:mi><mml:mi><mml:mi><mml:mi mathvariant="normal">S</mml:mi><mml:misub><mml:mi mathvariant="normal">S</mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:misub></mml:mi></mml:mi></mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi< mml:mi=""><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi< mml:mi=""><mml:mi< mml:mi=""><mml:mi< mml:mi=""><mml:mi< mml:mi=""><mml:mi< mml:mi="" mml:mi<=""><mml:mi< mml:mi=""><mml:mi< mml:mi=""><mml:mi< mml:mi=""><mml:mi< mml:mi=""><mml:mi< mml:mi<="" mml:mi<<="" td=""><td>4.0</td><td>29</td></mml:mi<></mml:mi<></mml:mi<></mml:mi<></mml:mi<></mml:mi<></mml:mi<></mml:mi<></mml:mi<></mml:mi<></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi<></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mrow></mml:msub></mml:mrow>	4.0	29
40	Performance degradation and recovery characteristics during gas purging in a proton exchange membrane fuel cell with a dead-ended anode. Applied Thermal Engineering, 2018, 129, 968-978.	3.0	46
41	High-temperature electrolysis of simulated flue gas in solid oxide electrolysis cells. Electrochimica Acta, 2018, 280, 206-215.	2.6	19
42	Synthesis of MOF-Derived Nonprecious Catalyst with High Electrocatalytic Activity for Oxygen Reduction Reaction. Industrial & Engineering Chemistry Research, 2018, 57, 12087-12095.	1.8	45
43	Be12O12 Nano-cage as a Promising Catalyst for CO2 Hydrogenation. Scientific Reports, 2017, 7, 40562.	1.6	6
44	Enhanced CO2 electroreduction on armchair graphene nanoribbons edge-decorated with copper. Nano Research, 2017, 10, 1641-1650.	5.8	35
45	Optimization of BSCF-SDC composite air electrode for intermediate temperature solid oxide electrolyzer cell. Energy Conversion and Management, 2017, 136, 78-84.	4.4	37
46	Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode. Applied Energy, 2017, 191, 559-567.	5.1	49
47	Gas purging effect on the degradation characteristic of a proton exchange membrane fuel cell with dead-ended mode operation II. Under different operation pressures. Energy, 2017, 131, 50-57.	4.5	30
48	Energy analysis of a hybrid PEMFC–solar energy residential micro-CCHP system combined with an organic Rankine cycle and vapor compression cycle. Energy Conversion and Management, 2017, 142, 374-384.	4.4	100
49	Numerical analysis of high-temperature proton exchange membrane fuel cells during start-up by inlet gas heating and applied voltage. International Journal of Hydrogen Energy, 2017, 42, 10390-10406.	3.8	11
50	High-temperature electrolysis of synthetic seawater using solid oxide electrolyzer cells. Journal of Power Sources, 2017, 342, 79-87.	4.0	45
51	Gas purging effect on the degradation characteristic of a proton exchange membrane fuel cell with dead-ended mode operation I. With different electrolytes. Energy, 2017, 141, 40-49.	4.5	31
52	An evaluation of electrochemical performance of a solid oxide electrolyzer cell as a function of co-sintered YSZ-SDC bilayer electrolyte thickness. Energy Conversion and Management, 2017, 150, 567-573.	4.4	19
53	Modelling of solid oxide electrolyser cell using extreme learning machine. Electrochimica Acta, 2017, 251, 137-144.	2.6	24
54	Development of a fiber-based membraneless hydrogen peroxide fuel cell. RSC Advances, 2017, 7, 40755-40760.	1.7	20

#	Article	IF	Citations
55	Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system. Applied Energy, 2017, 204, 446-458.	5.1	86
56	A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs). International Journal of Hydrogen Energy, 2017, 42, 3142-3165.	3.8	117
57	Carbon corrosion and performance degradation mechanism in a proton exchange membrane fuel cell with dead-ended anode and cathode. Energy, 2016, 106, 54-62.	4.5	98
58	Catalysis mechanisms of CO ₂ and CO methanation. Catalysis Science and Technology, 2016, 6, 4048-4058.	2.1	316
59	Investigation of heating and cooling in a stand-alone high temperature PEM fuel cell system. Energy Conversion and Management, 2016, 129, 36-42.	4.4	34
60	Curvature-Dependent Selectivity of CO ₂ Electrocatalytic Reduction on Cobalt Porphyrin Nanotubes. ACS Catalysis, 2016, 6, 6294-6301.	5.5	113
61	Cobalt diselenide nanoparticles embedded within porous carbon polyhedra as advanced electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2016, 330, 132-139.	4.0	34
62	Influence of pore former on electrochemical performance of fuel-electrode supported SOFCs manufactured by aqueous-based tape-casting. Energy, 2016, 115, 149-154.	4.5	18
63	A study of short stack with large area solid oxide fuel cells by aqueous tape casting. International Journal of Hydrogen Energy, 2016, 41, 18203-18206.	3.8	7
64	Analysis of steady state heating configuration for high-temperature proton exchange membrane fuel cell based on multi-physical numerical modelling. Electrochimica Acta, 2016, 222, 280-292.	2.6	9
65	Study of Activation Effect of Anodic Current on La0.6Sr0.4Co0.2Fe0.8O3â^Î^Air Electrode in Solid Oxide Electrolyzer Cell. Electrochimica Acta, 2016, 209, 56-64.	2.6	22
66	Mitigation studies of carbon corrosion by optimizing the opening size of the cathode outlet in a proton exchange membrane fuel cell with dead-ended anode. Energy Conversion and Management, 2016, 119, 60-66.	4.4	74
67	Fuel cell and hydrogen technologies research, development and demonstration activities in Singapore $\hat{a} \in \mathbb{C}$ An update. International Journal of Hydrogen Energy, 2016, 41, 13869-13878.	3.8	29
68	Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy and Environmental Science, 2016, 9, 1687-1695.	15.6	290
69	Dynamic performance of a high-temperature PEM (proton exchange membrane) fuel cell – Modelling and fuzzy control of purging process. Energy, 2016, 95, 425-432.	4.5	29
70	Paper-based membraneless hydrogen peroxide fuel cell prepared byÂmicro-fabrication. Journal of Power Sources, 2016, 301, 392-395.	4.0	56
71	An experimental study on anode water management in high temperature PEM fuel cell. International Journal of Hydrogen Energy, 2015, 40, 4666-4672.	3.8	39
72	Evaluation of impregnated nanocomposite membranes for aqueous methanol electrochemical reforming. Solid State Ionics, 2015, 283, 16-20.	1.3	14

#	Article	IF	Citations
73	Experimental investigation of open circuit voltage during start-up process of HT-PEMFC. Electrochimica Acta, 2015, 186, 353-358.	2.6	4
74	Sensitivity analysis of anode overpotential during start-up process of a high temperature proton exchange membrane fuel cell. Electrochimica Acta, 2015, 176, 965-975.	2.6	8
75	Dynamic performance of a high-temperature PEM fuel cell – An experimental study. Energy, 2015, 90, 1949-1955.	4.5	38
76	Transient analysis of carbon monoxide transport phenomena and adsorption kinetics in HT-PEMFC during dynamic current extraction. Electrochimica Acta, 2015, 165, 288-300.	2.6	7
77	Heterogeneous catalytic conversion of CO ₂ : a comprehensive theoretical review. Nanoscale, 2015, 7, 8663-8683.	2.8	306
78	Thermodynamic analysis of combined Solid Oxide Electrolyzer andÂFischer–Tropsch processes. Energy, 2015, 81, 682-690.	4. 5	62
79	Poly(diallyldimethylammonium chloride)-functionalized reduced graphene oxide supported palladium nanoparticles for enhanced methanol oxidation. RSC Advances, 2015, 5, 32983-32989.	1.7	8
80	Towards a smart energy network: The roles of fuel/electrolysis cells and technological perspectives. International Journal of Hydrogen Energy, 2015, 40, 6866-6919.	3.8	141
81	Production of sustainable methane from renewable energy and captured carbon dioxide with the use of Solid Oxide Electrolyzer: AÂthermodynamic assessment. Energy, 2015, 82, 714-721.	4.5	58
82	CO ₂ Electroreduction Performance of Transition Metal Dimers Supported on Graphene: A Theoretical Study. ACS Catalysis, 2015, 5, 6658-6664.	5 . 5	227
83	Determination of the optimal operating temperature range for high temperature PEM fuel cell considering its performance, CO tolerance and degradation. Energy Conversion and Management, 2015, 105, 433-441.	4.4	52
84	Effect of Sr Surface Segregation of La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3 â^î î} Electrode on Its Electrochemical Performance in SOC. Journal of the Electrochemical Society, 2015, 162, F1316-F1323.	1.3	72
85	Fabrication and electrochemical characterization of Pt–Pd impregnated nanocomposite polymer electrolyte membranes for high concentration DMFCs. RSC Advances, 2015, 5, 981-987.	1.7	13
86	Transient carbon monoxide poisoning kinetics during warm-up period of a high-temperature PEMFC $\hat{a} \in \text{Physical model}$ and parametric study. Applied Energy, 2015, 140, 44-51.	5.1	37
87	Techno-Economic Study of Hydrogen Production via Steam Reforming of Methanol, Ethanol, and Diesel. Energy Technology & Policy, 2014, 1, 15-22.	1.1	16
88	Fabrication of phosphotungstic acid functionalized mesoporous silica composite membrane by alternative tape-casting incorporating phase inversion technique. Journal of Power Sources, 2014, 246, 522-530.	4.0	13
89	Thermal and structural study of BIVOX undoped and doped with La in various atmosphere toward applications in IT-SOFC. Ceramics International, 2014, 40, 8969-8974.	2.3	8
90	Theoretical consideration of Solid Oxide Electrolyzer Cell with zirconia-based electrolyte operated under extreme polarization or with low supply of feedstock chemicals. Electrochimica Acta, 2014, 130, 718-727.	2.6	13

#	Article	IF	Citations
91	Supported PtAu catalysts with different nano-structures for ethanol electrooxidation. Electrochimica Acta, 2014, 123, 233-239.	2.6	49
92	Investigation of water transport and its effect on performance of high-temperature PEM fuel cells. Electrochimica Acta, 2014, 149, 271-277.	2.6	42
93	Membraneless hydrogen peroxide micro semi-fuel cell for portable applications. RSC Advances, 2014, 4, 37284-37287.	1.7	21
94	Hierarchical 3D micro-/nano-V2O5 (vanadium pentoxide) spheres as cathode materials for high-energy and high-power lithium ion-batteries. Energy, 2014, 76, 607-613.	4.5	40
95	Physical principles for the calculation of equilibrium potential for co-electrolysis of steam and carbon dioxide in a Solid Oxide Electrolyzer Cell (SOEC). Electrochimica Acta, 2014, 147, 490-497.	2.6	49
96	Pd nanoparticles supported on PDDA-functionalized carbon black with enhanced ORR activity in alkaline medium. International Journal of Hydrogen Energy, 2014, 39, 8449-8456.	3.8	29
97	Understanding the role of cathode structure and property on water management and electrochemical performance of a PEM fuel cell. International Journal of Hydrogen Energy, 2013, 38, 11988-11995.	3.8	36
98	PtFeNi tri-metallic alloy nanoparticles as electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells with ultra-low Pt loading. International Journal of Hydrogen Energy, 2013, 38, 3338-3345.	3.8	45
99	Current Advances in the Carbon Nanotube/Thermotropic Main-Chain Liquid Crystalline Polymer Nanocomposites and Their Blends. Polymers, 2012, 4, 889-912.	2.0	54
100	Influences of carbon fillers on electrical conductivity and crystallinity of polyethylene terephthalate. Journal of Composite Materials, 2012, 46, 1091-1099.	1.2	14
101	Carbon Nanotube-Based Materials for Fuel Cell Applications. Australian Journal of Chemistry, 2012, 65, 1213.	0.5	31
102	A membraneless hydrogen peroxide fuel cell using Prussian Blue as cathode material. Energy and Environmental Science, 2012, 5, 8225.	15.6	242
103	Poly(vinyl alcohol) Nanocomposites Filled with Poly(vinyl alcohol)-Grafted Graphene Oxide. ACS Applied Materials & Date: ACS A	4.0	240
104	Improvement in properties of multiwalled carbon nanotube/polypropylene nanocomposites through homogeneous dispersion with the aid of surfactants. Journal of Applied Polymer Science, 2012, 124, 1117-1127.	1.3	43
105	Robust solid oxide cells for alternate power generation and carbon conversion. RSC Advances, 2011, 1, 715.	1.7	28
106	Covalent functionalization of carbon nanotubes for ultimate interfacial adhesion to liquid crystalline polymer. Soft Matter, 2011, 7, 9505.	1.2	34
107	Nitrophenyl functionalization of carbon nanotubes and its effect on properties of MWCNT/LCP composites. Macromolecular Research, 2011, 19, 660-667.	1.0	13
108	Strengthening of liquid crystalline polymer by functionalized carbon nanotubes through interfacial interaction and homogeneous dispersion. Polymers for Advanced Technologies, 2011, 22, 1452-1458.	1.6	12

#	Article	IF	CITATIONS
109	A review on membraneless laminar flow-based fuel cells. International Journal of Hydrogen Energy, 2011, 36, 5675-5694.	3.8	205
110	The Role of Functionalized Carbon Nanotubes in a PA6/LCP Blend. Journal of Nanoscience and Nanotechnology, 2010, 10, 5242-5251.	0.9	17
111	Effects of hydrophobicity of the cathode catalyst layer on the performance of a PEM fuel cell. Electrochimica Acta, 2010, 55, 2706-2711.	2.6	40
112	Polymer nanocomposites based on functionalized carbon nanotubes. Progress in Polymer Science, 2010, 35, 837-867.	11.8	1,482
113	Fabrication and evaluation of Ni-GDC composite anode prepared by aqueous-based tape casting method for low-temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2010, 35, 301-307.	3.8	94
114	Complementary effects of multiwalled carbon nanotubes and conductive carbon black on polyamide 6. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1203-1212.	2.4	54
115	Annealing induced electrical conductivity jump of multiâ€walled carbon nanotube/polypropylene composites and influence of molecular weight of polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2238-2247.	2.4	53
116	An air-breathing microfluidic formic acid fuel cell with a porous planar anode: experimental and numerical investigations. Journal of Micromechanics and Microengineering, 2010, 20, 105008.	1.5	61
117	Molecular Interactions in PA6, LCP and their Blend Incorporated with Functionalized Carbon Nanotubes. Key Engineering Materials, 2010, 447-448, 634-638.	0.4	3
118	Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending. Composites Part A: Applied Science and Manufacturing, 2010, 41, 419-426.	3.8	129
119	Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods. Materials Chemistry and Physics, 2009, 117, 313-320.	2.0	107
120	Specific Functionalization of Carbon Nanotubes for Advanced Polymer Nanocomposites. Advanced Functional Materials, 2009, 19, 3962-3971.	7.8	93
121	Anti-flooding cathode catalyst layer for high performance PEM fuel cell. Electrochemistry Communications, 2009, 11, 897-900.	2.3	42
122	Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media. Applied Catalysis B: Environmental, 2009, 91, 507-515.	10.8	319
123	Improvement of Properties of Polyetherimide/Liquid Crystalline Polymer Blends in the Presence of Functionalized Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2009, 9, 1928-1934.	0.9	8
124	Effect of Carbon Nanotubes and Processing Methods on the Properties of Carbon Nanotube/Polypropylene Composites. Journal of Nanoscience and Nanotechnology, 2009, 9, 5910-5919.	0.9	18
125	Pt and Ru dispersed on LiCoO2 for hydrogen generation from sodium borohydride solutions. Journal of Power Sources, 2008, 176, 306-311.	4.0	139
126	Development of a Cylindrical Shape Self-Breathing Mini Fuel Cell Stack. Journal of Fuel Cell Science and Technology, 2008, 5, .	0.8	3

#	Article	IF	CITATIONS
127	A laser-micromachined polymeric membraneless fuel cell. Journal of Micromechanics and Microengineering, 2007, 17, 1107-1113.	1.5	64
128	Sulfur Tolerance and Hydrocarbon Stability of La[sub 0.75]Sr[sub 0.25]Cr[sub 0.5]Mn[sub 0.5]O[sub 3]â^•Gd[sub 0.2]Ce[sub 0.8]O[sub 1.9] Composite Anode under Anodic Polarization. Journal of the Electrochemical Society, 2007, 154, B1206.	1.3	37
129	High-performance (La,Sr)(Cr,Mn)O3/(Gd,Ce)O2â^î^c composite anode for direct oxidation of methane. Journal of Power Sources, 2007, 165, 34-40.	4.0	47
130	Anode-supported solid oxide fuel cell with yttria-stabilized zirconia/gadolinia-doped ceria bilalyer electrolyte prepared by wet ceramic co-sintering process. Journal of Power Sources, 2006, 162, 1036-1042.	4.0	91
131	(La0.75Sr0.25)(Cr0.5Mn0.5)O3/YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells. Solid State Ionics, 2006, 177, 149-157.	1.3	128
132	(La0.8Sr0.2)0.9MnO3–Gd0.2Ce0.8O1.9 composite cathodes prepared from (Gd, Ce)(NO3) x -modified (La0.8Sr0.2)0.9MnO3 for intermediate-temperature solid oxide fuel cells. Journal of Solid State Electrochemistry, 2006, 10, 339-347.	1.2	33
133	High-performance low-temperature solid oxide fuel cell with novel BSCF cathode. Journal of Power Sources, 2006, 161, 123-128.	4.0	189
134	Micromachined polymer electrolyte membrane and direct methanol fuel cells—a review. Journal of Micromechanics and Microengineering, 2006, 16, R1-R12.	1.5	130
135	Development of a polymeric micro fuel cell containing laser-micromachined flow channels. Journal of Micromechanics and Microengineering, 2005, 15, 231-236.	1.5	76
136	Defect Chemistry of La[sub $1\hat{a}^2x$]Sr[sub x]MnO[sub $3\hat{A}\pm\hat{1}$] under Cathodic Polarization. Electrochemical and Solid-State Letters, 2004, 7, A144.	2.2	27
137	An Improved Anode Micro Model of SOFC. Electrochemical and Solid-State Letters, 2004, 7, A63.	2.2	26
138	Development of LSM/YSZ composite cathode for anode-supported solid oxide fuel cells. Journal of Applied Electrochemistry, 2004, 34, 409-415.	1.5	53
139	A review of anode materials development in solid oxide fuel cells. Journal of Materials Science, 2004, 39, 4405-4439.	1.7	540
140	Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction. Solid State Ionics, 2004, 170, 9-15.	1.3	215
141	Overcoming the effect of contaminant in solid oxide fuel cell (SOFC) electrolyte: spark plasma sintering (SPS) of 0.5wt.% silica-doped yttria-stabilized zirconia (YSZ). Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 374, 64-71.	2.6	40
142	Microstructure-property modifications in plasma sprayed 20 wt.% yttria stabilized zirconia electrolyte by spark plasma sintering (SPS) technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 366, 120-126.	2.6	45
143	Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte. International Journal of Hydrogen Energy, 2004, 29, 1025-1033.	3.8	258
144	Electrochemical behavior of La(Sr)MnO3 electrode under cathodic and anodic polarization. Solid State Ionics, 2004, 167, 379-387.	1.3	83

#	Article	IF	CITATIONS
145	Simulation of a composite cathode in solid oxide fuel cells. Electrochimica Acta, 2004, 49, 1851-1861.	2.6	154
146	Cyclic voltammetry of (La,Sr)MnO3 electrode on YSZ substrate. Solid State Ionics, 2003, 164, 17-25.	1.3	28
147	A simple bilayer electrolyte model for solid oxide fuel cells. Solid State Ionics, 2003, 158, 29-43.	1.3	48
148	Effect of characteristics of Y2O3/ZrO2 powders on fabrication of anode-supported solid oxide fuel cells. Journal of Power Sources, 2003, 117, 26-34.	4.0	83
149	Identification of O2 reduction processes at yttria stabilized zirconia doped lanthanum manganite interface. Journal of Power Sources, 2003, 123, 17-25.	4.0	104
150	Preparation yttria-stabilized zirconia electrolyte by spark-plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 341, 43-48.	2.6	68
151	Densification of plasma sprayed YSZ electrolytes by spark plasma sintering (SPS). Journal of the European Ceramic Society, 2003, 23, 1855-1863.	2.8	93
152	Development of (La,Sr)MnO[sub 3]-Based Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. Electrochemical and Solid-State Letters, 2003, 6, A67.	2.2	102
153	Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 335, 246-252.	2.6	199
154	An electrolyte model for ceramic oxygen generator and solid oxide fuel cell. Journal of Power Sources, 2002, 111, 320-328.	4.0	27
155	A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. Journal of Power Sources, 2001, 93, 130-140.	4.0	796
156	Modelling of engine in-cylinder thermodynamics under high values of ignition retard. International Journal of Thermal Sciences, 2001, 40, 94-103.	2.6	31
157	Performance and emissions characteristics of a partially insulated gasoline engine. International Journal of Thermal Sciences, 2001, 40, 255-261.	2.6	25
158	Reliability and accuracy of measured overpotential in a three-electrode fuel cell system. Journal of Applied Electrochemistry, 2001, 31, 1163-1170.	1.5	64
159	The Effect of Thermal Barrier Coated Piston Crown on Engine Characteristics. Journal of Materials Engineering and Performance, 2000, 9, 103-109.	1.2	72
160	Effect of Engine Operating Condition on Thermodynamic Cycle JSME International Journal Series B, 1997, 40, 175-182.	0.3	2