List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-cost anti-mycobacterial drug discovery using engineered E. coli. Nature Communications, 2022, 13,	12.8	8
2	A survival model for course-course interactions in a Massive Open Online Course platform. PLoS ONE, 2021, 16, e0245718.	2.5	5
3	Empowering grassroots innovation to accelerate biomedical research. PLoS Biology, 2021, 19, e3001349.	5.6	5
4	Contours of citizen science: a vignette study. Royal Society Open Science, 2021, 8, 202108.	2.4	56
5	Engineering gene overlaps to sustain genetic constructs in vivo. PLoS Computational Biology, 2021, 17, e1009475.	3.2	7
6	Remote Digital Psychiatry for Mobile Mental Health Assessment and Therapy: MindLogger Platform Development Study. Journal of Medical Internet Research, 2021, 23, e22369.	4.3	10
7	Corona Detective: a simple, scalable, and robust SARS-CoV-2 detection method based on reverse transcription loop-mediated isothermal amplification. Journal of Biomolecular Techniques, 2021, 32, 89-97.	1.5	1
8	Loop-Mediated Isothermal Amplification Detection of SARS-CoV-2 and Myriad Other Applications. Journal of Biomolecular Techniques, 2021, 32, 228-275.	1.5	28
9	Bacteria can be selected to help beneficial plasmids spread. PLoS Biology, 2021, 19, e3001489.	5.6	1
10	Ratiometric quorum sensing governs the trade-off between bacterial vertical and horizontal antibiotic resistance propagation. PLoS Biology, 2020, 18, e3000814.	5.6	8
11	Artificial modulation of cell width significantly affects the division time of Escherichia coli. Scientific Reports, 2020, 10, 17847.	3.3	4
12	Ten simple rules for open human health research. PLoS Computational Biology, 2020, 16, e1007846.	3.2	1
13	Observing Nutrient Gradients, Gene Expression and Growth Variation Using the "Yeast Machine" Microfluidic Device. Bio-protocol, 2020, 10, e3668.	0.4	Ο
14	Systematic Detection of Amino Acid Substitutions in Proteomes Reveals Mechanistic Basis of Ribosome Errors and Selection for Translation Fidelity. Molecular Cell, 2019, 75, 427-441.e5.	9.7	84
15	Temporal scaling of aging as an adaptive strategy of <i>Escherichia coli</i> . Science Advances, 2019, 5, eaaw2069.	10.3	28
16	Two stochastic processes shape diverse senescence patterns in a single ell organism. Evolution; International Journal of Organic Evolution, 2019, 73, 847-857.	2.3	12
17	A microfluidic device for inferring metabolic landscapes in yeast monolayer colonies. ELife, 2019, 8, .	6.0	25
18	The Good, the Bad, and the Ugly of ROS: New Insights on Aging and Aging-Related Diseases from Eukaryotic and Prokaryotic Model Organisms. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-23.	4.0	102

#	Article	IF	CITATIONS
19	Protein Posttranslational Modifications: Roles in Aging and Age-Related Disease. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-19.	4.0	157
20	Time-lapse microscopy and image analysis of Escherichia coli cells in mother machines. Methods in Microbiology, 2016, 43, 49-68.	0.8	6
21	Phage-mediated Delivery of Targeted sRNA Constructs to Knock Down Gene Expression in E. coli . Journal of Visualized Experiments, 2016, , .	0.3	5
22	Indirect Fitness Benefits Enable the Spread of Host Genes Promoting Costly Transfer of Beneficial Plasmids. PLoS Biology, 2016, 14, e1002478.	5.6	25
23	The smell of us – crowdsourcing human body odor evaluation. Human Computation, 2016, 3, 161-179.	1.4	2
24	Shape matters in cooperation. , 2016, , .		0
25	A synthetic growth switch based on controlled expression of RNA polymerase. Molecular Systems Biology, 2015, 11, 840.	7.2	76
26	Shape matters: Lifecycle of cooperative patches promotes cooperation in bulky populations. Evolution; International Journal of Organic Evolution, 2015, 69, 788-802.	2.3	6
27	Mobile genetic elements are involved in bacterial sociality. Mobile Genetic Elements, 2015, 5, 7-11.	1.8	23
28	Genetic information transfer promotes cooperation in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11103-11108.	7.1	86
29	Silencing of Antibiotic Resistance in <i>E. coli</i> with Engineered Phage Bearing Small Regulatory RNAs. ACS Synthetic Biology, 2014, 3, 1003-1006.	3.8	31
30	Nanoscale Probing the Kinetics of Oriented Bacterial Cell Growth Using Atomic Force Microscopy. Small, 2014, 10, 3018-3025.	10.0	9
31	<i>In Situ</i> Characterization of Mycobacterial Growth Inhibition by Lytic Enzymes Expressed in Vectorized <i>E. coli</i> . ACS Synthetic Biology, 2014, 3, 932-934.	3.8	5
32	Direct assessment in bacteria of prionoid propagation and phenotype selection by <scp>Hsp</scp> 70 chaperone. Molecular Microbiology, 2014, 91, 1070-1087.	2.5	41
33	Growing Yeast into Cylindrical Colonies. Biophysical Journal, 2014, 106, 2214-2221.	0.5	22
34	Localization of Protein Aggregation in Escherichia coli Is Governed by Diffusion and Nucleoid Macromolecular Crowding Effect. PLoS Computational Biology, 2013, 9, e1003038.	3.2	113
35	Pre-Disposition and Epigenetics Govern Variation in Bacterial Survival upon Stress. PLoS Genetics, 2012, 8, e1003148.	3.5	29
36	Designing and using RNA scaffolds to assemble proteins in vivo. Nature Protocols, 2012, 7, 1797-1807.	12.0	57

#	Article	IF	CITATIONS
37	Organization of Intracellular Reactions with Rationally Designed RNA Assemblies. Science, 2011, 333, 470-474.	12.6	574
38	Evidence for an evolutionary antagonism between Mrr and Type III modification systems. Nucleic Acids Research, 2011, 39, 5991-6001.	14.5	21
39	Preâ€dispositions and epigenetic inheritance in the <i>Escherichia coli</i> lactose operon bistable switch. Molecular Systems Biology, 2010, 6, 357.	7.2	64
40	Emergence of Variability in Isogenic Escherichia coli Populations Infected by a Filamentous Virus. PLoS ONE, 2010, 5, e11823.	2.5	11
41	Recombination and Replication in DNA Repair of Heavily Irradiated Deinococcus radiodurans. Cell, 2009, 136, 1044-1055.	28.9	220
42	Protein aggregation as a paradigm of aging. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 980-996.	2.4	92
43	Mutations in two global regulators lower individual mortality in <i>Escherichia coli</i> . Molecular Microbiology, 2008, 67, 2-14.	2.5	49
44	Direct Visualization of Horizontal Gene Transfer. Science, 2008, 319, 1533-1536.	12.6	189
45	Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3076-3081.	7.1	461
46	Dissecting the Genetic Components of Adaptation of Escherichia coli to the Mouse Gut. PLoS Genetics, 2008, 4, e2.	3.5	89
47	Tracking of cells in a sequence of images using a low-dimension image representation. , 2008, , .		9
48	Microcontact Printing of Living Bacteria Arrays with Cellular Resolution. Nano Letters, 2007, 7, 2068-2072.	9.1	79
49	Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature, 2006, 443, 569-573.	27.8	398
50	Construction of a multiple fluorescence labelling system for use in co-invasion studies of Listeria monocytogenes. BMC Microbiology, 2006, 6, 86.	3.3	38
51	Catalytic Antibodies as Mechanistic and Structural Models of Hydrolytic Enzymes. , 2005, , 418-453.		1
52	Quantitative Detection of Protein Arrays. Analytical Chemistry, 2003, 75, 1436-1441.	6.5	54
53	Esterolytic Antibodies as Mechanistic and Structural Models of Hydrolases—A Quantitative Analysis. Journal of Molecular Biology, 2002, 320, 559-572.	4.2	14
54	Conformational changes affect binding and catalysis by ester-hydrolysing antibodies 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 285, 421-430.	4.2	44

#	Article	IF	CITATIONS
55	Expression and characterization of recombinant single-chain Fv and Fv fragments derived from a set of catalytic antibodies. Molecular Immunology, 1997, 34, 891-906.	2.2	22
56	Efficient and Selective P-nitrophenyl-ester-hydrolyzing Antibodies Elicited by a P-nitrobenzyl Phosphonate Hapten. FEBS Journal, 1997, 244, 619-626.	0.2	23
57	Transmission of internal rotations: correlated, uncorrelated, and localized disrotatory rotations in propeller chains. Journal of Organic Chemistry, 1993, 58, 6662-6670.	3.2	8