Thomas Foltynie Mrcp

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7540875/thomas-foltynie-mrcp-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 276 117 15,530 h-index g-index citations papers 6.6 6.64 19,748 295 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
276	A Randomized Trial Directly Comparing Ventral Capsule and Anteromedial Subthalamic Nucleus Stimulation in Obsessive-Compulsive Disorder: Clinical and Imaging Evidence for Dissociable Effects. <i>Focus (American Psychiatric Publishing)</i> , 2022 , 20, 160-169	1.1	O
275	Parkinson disease and STN-DBS: cognitive effects in GBA mutation carriers <i>Annals of Neurology</i> , 2022 ,	9.4	4
274	Quantifying Stridor Associated with Parkinsonism and Deep Brain Stimulation-A Case Report <i>Movement Disorders Clinical Practice</i> , 2022 , 9, 91-94	2.2	
273	Endurance of Short Pulse Width Thalamic Stimulation Efficacy in Intention Tremor. <i>Stereotactic and Functional Neurosurgery</i> , 2021 , 99, 281-286	1.6	2
272	Computer-vision based method for quantifying rising from chair in Parkinson's disease patients. <i>Intelligence-based Medicine</i> , 2021 , 6, 100046	2.7	2
271	European clinical guidelines for Tourette syndrome and other tic disorders-version 2.0. Part IV: deep brain stimulation. <i>European Child and Adolescent Psychiatry</i> , 2021 , 1	5.5	2
270	Dynamic Network Connectivity Reveals Markers of Response to Deep Brain Stimulation in Parkinson's Disease. <i>Frontiers in Human Neuroscience</i> , 2021 , 15, 729677	3.3	2
269	Disease modifying therapies III: Novel targets. <i>Neuropharmacology</i> , 2021 , 201, 108839	5.5	О
268	Cortical connectivity of the nucleus basalis of Meynert in Parkinson's disease and Lewy body dementias. <i>Brain</i> , 2021 , 144, 781-788	11.2	7
267	Basal Ganglia Pathways Associated With Therapeutic Pallidal Deep Brain Stimulation for Tourette Syndrome. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2021 , 6, 961-972	3.4	4
266	Pedunculopontine Nucleus Deep Brain Stimulation for Parkinsonian Disorders: A Case Series. <i>Stereotactic and Functional Neurosurgery</i> , 2021 , 99, 287-294	1.6	5
265	The Future of Incretin-Based Approaches for Neurodegenerative Diseases in Older Adults: Which to Choose? A Review of their Potential Efficacy and Suitability. <i>Drugs and Aging</i> , 2021 , 38, 355-373	4.7	2
264	Might it Be Possible to Assess Rigidity in PD Patients Remotely?. <i>Movement Disorders Clinical Practice</i> , 2021 , 8, 489-490	2.2	
263	Inhibitory Control on a Stop Signal Task in Tourette Syndrome before and after Deep Brain Stimulation of the Internal Segment of the Globus Pallidus. <i>Brain Sciences</i> , 2021 , 11,	3.4	2
262	Reply to Comment on: Successful Treatment of Levodopa/Carbidopa Intestinal Gel Associated "Biphasic-Like" Dyskinesia with Pallidal Deep Brain Stimulation. <i>Movement Disorders Clinical Practice</i> , 2021 , 8, 814-815	2.2	
261	Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets. <i>JAMA Neurology</i> , 2021 , 78, 464-472	17.2	17
260	Exenatide once weekly over 2 years as a potential disease-modifying treatment for Parkinson's disease: protocol for a multicentre, randomised, double blind, parallel group, placebo controlled, phase 3 trial: The 'Exenatide-PD3' study. BMJ Open. 2021. 11. e047993	3	6

(2020-2021)

259	Investigation of Autosomal Genetic Sex Differences in Parkinson's Disease. <i>Annals of Neurology</i> , 2021 , 90, 35-42	9.4	6
258	A practical guide to troubleshooting pallidal deep brain stimulation issues in patients with dystonia. <i>Parkinsonism and Related Disorders</i> , 2021 , 87, 142-154	3.6	O
257	Progress towards therapies for disease modification in Parkinson's disease. <i>Lancet Neurology, The</i> , 2021 , 20, 559-572	24.1	13
256	Video-Based Analyses of Parkinson's Disease Severity: A Brief Review. <i>Journal of Parkinsonis Disease</i> , 2021 , 11, S83-S93	5.3	9
255	Balance between competing spectral states in subthalamic nucleus is linked to motor impairment in Parkinson's disease. <i>Brain</i> , 2021 ,	11.2	2
254	Successful Treatment of Levodopa/Carbidopa Intestinal Gel Associated "Biphasic-like" Dyskinesia with Pallidal Deep Brain Stimulation. <i>Movement Disorders Clinical Practice</i> , 2021 , 8, 273-274	2.2	5
253	Genome-Wide Association Studies of Cognitive and Motor Progression in Parkinson's Disease. <i>Movement Disorders</i> , 2021 , 36, 424-433	7	27
252	Stimulation Sweet Spot in Subthalamic Deep Brain Stimulation - Myth or Reality? A Critical Review of Literature. <i>Stereotactic and Functional Neurosurgery</i> , 2021 , 99, 425-442	1.6	1
251	Long-term success of low-frequency subthalamic nucleus stimulation for Parkinson's disease depends on tremor severity and symptom duration. <i>Brain Communications</i> , 2021 , 3, fcab165	4.5	1
250	Reply to: Subthalamic Nucleus Deep Brain Stimulation as Rescue Therapy for Levodopa Carbidopa Intestinal Gel-Associated Biphasic-Like Dyskinesias. <i>Movement Disorders Clinical Practice</i> , 2021 , 8, 1157-	-1 175 8	
249	"Real-Life" Remote Dystonia Assessment: Feasibility, Accuracy, and Practice Implications. <i>Movement Disorders Clinical Practice</i> , 2021 , 8, 1269-1271	2.2	
248	Neural signatures of hyperdirect pathway activity in Parkinson's disease. <i>Nature Communications</i> , 2021 , 12, 5185	17.4	10
247	The Parkinson's Real-World Impact Assessment (PRISM) Study: A European Survey of the Burden of Parkinson's Disease in Patients and their Carers. <i>Journal of Parkinsonis Disease</i> , 2021 , 11, 1309-1323	5.3	2
246	A Clinically Interpretable Computer-Vision Based Method for Quantifying Gait in Parkinson's Disease. <i>Sensors</i> , 2021 , 21,	3.8	6
245	Finding genetically-supported drug targets for Parkinson's disease using Mendelian randomization of the druggable genome <i>Nature Communications</i> , 2021 , 12, 7342	17.4	2
244	Entraining Stepping Movements of Parkinson's Patients to Alternating Subthalamic Nucleus Deep Brain Stimulation. <i>Journal of Neuroscience</i> , 2020 , 40, 8964-8972	6.6	6
243	Opicapone Efficacy and Tolerability in Parkinson's Disease Patients Reporting Insufficient Benefit/Failure of Entacapone. <i>Movement Disorders Clinical Practice</i> , 2020 , 7, 955-960	2.2	4
242	Repurposing anti-diabetic drugs for the treatment of Parkinson's disease: Rationale and clinical experience. <i>Progress in Brain Research</i> , 2020 , 252, 493-523	2.9	12

241	Therapeutic Strategies to Treat or Prevent Off Episodes in Adults with Parkinson's Disease. <i>Drugs</i> , 2020 , 80, 775-796	12.1	14
240	Validation of a UPDRS-/MDS-UPDRS-based definition of functional dependency for Parkinson's disease. <i>Parkinsonism and Related Disorders</i> , 2020 , 76, 49-53	3.6	3
239	Subthalamic nucleus deep brain stimulation for Parkinson's disease: current trends and future directions. <i>Expert Review of Medical Devices</i> , 2020 , 17, 1063-1074	3.5	5
238	Penetrance of Parkinson's Disease in LRRK2 p.G2019S Carriers Is Modified by a Polygenic Risk Score. <i>Movement Disorders</i> , 2020 , 35, 774-780	7	27
237	Ambroxol for the Treatment of Patients With Parkinson Disease With and Without Glucocerebrosidase Gene Mutations: A Nonrandomized, Noncontrolled Trial. <i>JAMA Neurology</i> , 2020 , 77, 427-434	17.2	113
236	The Association Between Type 2 Diabetes Mellitus and Parkinson's Disease. <i>Journal of Parkinsonis Disease</i> , 2020 , 10, 775-789	5.3	29
235	A common polymorphism in is associated with accelerated motor decline in -Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2020 , 91, 673-674	5.5	5
234	Bilateral nucleus basalis of Meynert deep brain stimulation for dementia with Lewy bodies: A randomised clinical trial. <i>Brain Stimulation</i> , 2020 , 13, 1031-1039	5.1	15
233	Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease: Valuable Programming Insights from Anecdotal Observations. <i>Stereotactic and Functional Neurosurgery</i> , 2020 , 98, 62-64	1.6	
232	Motor complications in Parkinson's disease: 13-year follow-up of the CamPaIGN cohort. <i>Movement Disorders</i> , 2020 , 35, 185-190	7	19
231	Reply: Pathophysiology of gait disorders induced by bilateral globus pallidus interna stimulation in dystonia. <i>Brain</i> , 2020 , 143, e4	11.2	1
230	Ursodeoxycholic acid as a novel disease-modifying treatment for Parkinson's disease: protocol for a two-centre, randomised, double-blind, placebo-controlled trial, The 'UP' study. <i>BMJ Open</i> , 2020 , 10, e03	3 <i>8</i> 911	6
229	Longitudinal functional connectivity changes related to dopaminergic decline in Parkinson's disease. <i>NeuroImage: Clinical</i> , 2020 , 28, 102409	5.3	3
228	Novel Programming Features Help Alleviate Subthalamic Nucleus Stimulation-Induced Side Effects. <i>Movement Disorders</i> , 2020 , 35, 2261-2269	7	3
227	Ropinirole, a dopamine agonist with high D affinity, reduces proactive inhibition: A double-blind, placebo-controlled study in healthy adults. <i>Neuropharmacology</i> , 2020 , 179, 108278	5.5	1
226	Identification of nonlinear features in cortical and subcortical signals of Parkinson's Disease patients via a novel efficient measure. <i>NeuroImage</i> , 2020 , 223, 117356	7.9	3
225	Diabetes medications and risk of Parkinson's disease: a cohort study of patients with diabetes. <i>Brain</i> , 2020 , 143, 3067-3076	11.2	37
224	Structural connectivity predicts clinical outcomes of deep brain stimulation for Tourette syndrome. <i>Brain</i> , 2020 , 143, 2607-2623	11.2	22

(2019-2020)

223	Resting state activity and connectivity of the nucleus basalis of Meynert and globus pallidus in Lewy body dementia and Parkinson's disease dementia. <i>NeuroImage</i> , 2020 , 221, 117184	7.9	8
222	Not only loud but also intelligible. <i>EClinicalMedicine</i> , 2020 , 24, 100456	11.3	1
221	The role of phosphodiesterase 4 in excessive daytime sleepiness in Parkinson's disease. Parkinsonism and Related Disorders, 2020 , 77, 163-169	3.6	5
220	Short Versus Conventional Pulse-Width Deep Brain Stimulation in Parkinson's Disease: A Randomized Crossover Comparison. <i>Movement Disorders</i> , 2020 , 35, 101-108	7	10
219	Understanding the links between cardiovascular disease and Parkinson's disease. <i>Movement Disorders</i> , 2020 , 35, 55-74	7	28
218	Management of Advanced Therapies in Parkinson's Disease Patients in Times of Humanitarian Crisis: The COVID-19 Experience. <i>Movement Disorders Clinical Practice</i> , 2020 , 7, 361-372	2.2	55
217	Impact of variants on long-term clinical progression and mortality in incident Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2020 , 91, 695-702	5.5	16
216	Non-invasive intervention for motor signs of Parkinson's disease: the effect of vibratory stimuli. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2020 ,	5.5	1
215	The Genetic Architecture of Parkinson Disease in Spain: Characterizing Population-Specific Risk, Differential Haplotype Structures, and Providing Etiologic Insight. <i>Movement Disorders</i> , 2019 , 34, 1851-	1863	18
214	A Randomized Trial Directly Comparing Ventral Capsule and Anteromedial Subthalamic Nucleus Stimulation in Obsessive-Compulsive Disorder: Clinical and Imaging Evidence for Dissociable Effects. <i>Biological Psychiatry</i> , 2019 , 85, 726-734	7.9	94
213	The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease. <i>Movement Disorders</i> , 2019 , 34, 460-468	7	40
212	The long-term outcome of impulsive compulsive behaviours in Parkinson's disease. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2019 , 90, 1288-1289	5.5	1
211	Deep brain stimulation has state-dependent effects on motor connectivity in Parkinson's disease. <i>Brain</i> , 2019 , 142, 2417-2431	11.2	19
2 10	Impairment in Theory of Mind in Parkinson's Disease Is Explained by Deficits in Inhibition. <i>Parkinsonis Disease</i> , 2019 , 2019, 5480913	2.6	5
209	The BRadykinesia Akinesia INcoordination (BRAIN) Tap Test: Capturing the Sequence Effect. <i>Movement Disorders Clinical Practice</i> , 2019 , 6, 462-469	2.2	4
208	Comparison of phosphodiesterase 10A and dopamine transporter levels as markers of disease burden in early Parkinson's disease. <i>Movement Disorders</i> , 2019 , 34, 1505-1515	7	10
207	Image-based analysis and long-term clinical outcomes of deep brain stimulation for Tourette syndrome: a multisite study. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2019 , 90, 1078-1090	5.5	48
206	L-dopa responsiveness in early Parkinson's disease is associated with the rate of motor progression. Parkinsonism and Related Disorders, 2019 , 65, 55-61	3.6	10

205	Proximity extension assay testing reveals novel diagnostic biomarkers of atypical parkinsonian syndromes. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2019 , 90, 768-773	5.5	13
204	Chronic Subthalamic Nucleus Stimulation in Parkinson's Disease: Optimal Frequency for Gait Depends on Stimulation Site and Axial Symptoms. <i>Frontiers in Neurology</i> , 2019 , 10, 29	4.1	4
203	Beta synchrony in the cortico-basal ganglia network during regulation of force control on and off dopamine. <i>Neurobiology of Disease</i> , 2019 , 127, 253-263	7.5	7
202	Post hoc analysis of the Exenatide-PD trial-Factors that predict response. <i>European Journal of Neuroscience</i> , 2019 , 49, 410-421	3.5	25
201	Genetic analysis of Mendelian mutations in a large UK population-based Parkinson's disease study. <i>Brain</i> , 2019 , 142, 2828-2844	11.2	35
200	Glycolysis as a therapeutic target for Parkinson's disease. <i>Lancet Neurology, The</i> , 2019 , 18, 1072-1074	24.1	6
199	The effects of deep brain stimulation of the pedunculopontine nucleus on cognition in Parkinson's disease and Progressive Supranuclear Palsy. <i>Clinical Parkinsonism & Related Disorders</i> , 2019 , 1, 48-51	0.9	1
198	Globus pallidal deep brain stimulation for Tourette syndrome: Effects on cognitive function. <i>Parkinsonism and Related Disorders</i> , 2019 , 69, 14-18	3.6	3
197	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. <i>Lancet Neurology, The</i> , 2019 , 18, 1091-1102	24.1	562
196	Dopaminergic Modulation of Sensory Attenuation in Parkinson's Disease: Is There an Underlying Modulation of Beta Power?. <i>Frontiers in Neurology</i> , 2019 , 10, 1001	4.1	2
195	Long-term outcomes of deep brain stimulation in Parkinson disease. <i>Nature Reviews Neurology</i> , 2019 , 15, 234-242	15	111
194	Effect of Low versus High Frequency Subthalamic Deep Brain Stimulation on Speech Intelligibility and Verbal Fluency in Parkinson's Disease: A Double-Blind Study. <i>Journal of Parkinsonis Disease</i> , 2019 , 9, 141-151	5.3	12
193	Utility of Neuronal-Derived Exosomes to Examine Molecular Mechanisms That Affect Motor Function in Patients With Parkinson Disease: A Secondary Analysis of the Exenatide-PD Trial. <i>JAMA Neurology</i> , 2019 , 76, 420-429	17.2	95
192	Glucagon-like Peptides (GLP-1) Perspectives in Synucleinopathies Treatment. <i>Movement Disorders Clinical Practice</i> , 2018 , 5, 255-258	2.2	7
191	Mechanisms Underlying Decision-Making as Revealed by Deep-Brain Stimulation in Patients with Parkinson's Disease. <i>Current Biology</i> , 2018 , 28, 1169-1178.e6	6.3	40
190	Connectivity derived thalamic segmentation in deep brain stimulation for tremor. <i>NeuroImage: Clinical</i> , 2018 , 18, 130-142	5.3	98
189	Features of -associated Parkinson's disease at presentation in the UK study. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2018 , 89, 702-709	5.5	55
188	Efficacy and Safety of Deep Brain Stimulation in Tourette Syndrome: The International Tourette Syndrome Deep Brain Stimulation Public Database and Registry. <i>JAMA Neurology</i> , 2018 , 75, 353-359	17.2	122

(2018-2018)

187	Bilateral Deep Brain Stimulation of the Nucleus Basalis of Meynert for Parkinson Disease Dementia: A Randomized Clinical Trial. <i>JAMA Neurology</i> , 2018 , 75, 169-178	17.2	69
186	Early nucleus basalis of Meynert degeneration predicts cognitive decline in Parkinson's disease. <i>Brain</i> , 2018 , 141, 7-10	11.2	9
185	Effects of pedunculopontine nucleus stimulation on human bladder function. <i>Neurourology and Urodynamics</i> , 2018 , 37, 726-734	2.3	10
184	C-PE2I and F-Dopa PET for assessing progression rate in Parkinson's: A longitudinal study. <i>Movement Disorders</i> , 2018 , 33, 117-127	7	30
183	Pedunculopontine nucleus deep brain stimulation in Parkinson's disease: A clinical review. <i>Movement Disorders</i> , 2018 , 33, 10-20	7	98
182	Protective effects of the GLP-1 mimetic exendin-4 in Parkinson's disease. <i>Neuropharmacology</i> , 2018 , 136, 260-270	5.5	47
181	High-frequency peripheral vibration decreases completion time on a number of motor tasks. <i>European Journal of Neuroscience</i> , 2018 , 48, 1789-1802	3.5	6
180	Drug Repurposing in Parkinson's Disease. CNS Drugs, 2018, 32, 747-761	6.7	25
179	Noninvasive options for 'wearing-off' in Parkinson's disease: a clinical consensus from a panel of UK Parkinson's disease specialists. <i>Neurodegenerative Disease Management</i> , 2018 , 8, 349-360	2.8	15
178	Standardised Neuropsychological Assessment for the Selection of Patients Undergoing DBS for Parkinson's Disease. <i>Parkinsonis Disease</i> , 2018 , 2018, 4328371	2.6	7
177	Impact of Subthalamic Deep Brain Stimulation Frequency on Upper Limb Motor Function in Parkinson's Disease. <i>Journal of Parkinsonis Disease</i> , 2018 , 8, 267-271	5.3	4
176	What Effects Might Exenatide have on Non-Motor Symptoms in Parkinson's Disease: A Post Hoc Analysis. <i>Journal of Parkinsonis Disease</i> , 2018 , 8, 247-258	5.3	29
175	The Effect of Short Pulse Width Settings on the Therapeutic Window in Subthalamic Nucleus Deep Brain Stimulation for Parkinson's disease. <i>Journal of Parkinsonis Disease</i> , 2018 , 8, 273-279	5.3	18
174	Development and clinimetric assessment of a nurse-administered screening tool for movement disorders in psychosis. <i>BJPsych Open</i> , 2018 , 4, 404-410	5	2
173	Developing and validating Parkinson's disease subtypes and their motor and cognitive progression. Journal of Neurology, Neurosurgery and Psychiatry, 2018 , 89, 1279-1287	5.5	66
172	Therapies to Slow, Stop, or Reverse Parkinson's Disease. <i>Journal of Parkinsonis Disease</i> , 2018 , 8, S115-S	1 3 13	14
171	Modulation of Beta Bursts in the Subthalamic Nucleus Predicts Motor Performance. <i>Journal of Neuroscience</i> , 2018 , 38, 8905-8917	6.6	63
170	Parkinsonian signs in patients with cervical dystonia treated with pallidal deep brain stimulation. <i>Brain</i> , 2018 , 141, 3023-3034	11.2	20

169	Association of Optic Pathways and Brain Structure With Deep Brain Stimulation of the Nucleus Basalis of Meynert for Parkinson Disease Dementia-Reply. <i>JAMA Neurology</i> , 2018 , 75, 896-897	17.2	1
168	Alternating Modulation of Subthalamic Nucleus Beta Oscillations during Stepping. <i>Journal of Neuroscience</i> , 2018 , 38, 5111-5121	6.6	42
167	Changing of the guard: reducing infection when replacing neural pacemakers. <i>Journal of Neurosurgery</i> , 2017 , 126, 1165-1172	3.2	19
166	Thalamic-Caudal Zona Incerta Deep Brain Stimulation for Refractory Orthostatic Tremor: A Report of 3 Cases. <i>Movement Disorders Clinical Practice</i> , 2017 , 4, 105-110	2.2	3
165	Neuroendocrine abnormalities in Parkinson's disease. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2017 , 88, 176-185	5.5	50
164	Differences in MDS-UPDRS Scores Based on Hoehn and Yahr Stage and Disease Duration. Movement Disorders Clinical Practice, 2017 , 4, 536-544	2.2	38
163	Utility of the new Movement Disorder Society clinical diagnostic criteria for Parkinson's disease applied retrospectively in a large cohort study of recent onset cases. <i>Parkinsonism and Related Disorders</i> , 2017 , 40, 40-46	3.6	9
162	l-Dopa responsiveness is associated with distinctive connectivity patterns in advanced Parkinson's disease. <i>Movement Disorders</i> , 2017 , 32, 874-883	7	28
161	Prediction of cognition in Parkinson's disease with a clinical-genetic score: a longitudinal analysis of nine cohorts. <i>Lancet Neurology, The</i> , 2017 , 16, 620-629	24.1	98
160	Pyramidal tract activation due to subthalamic deep brain stimulation in Parkinson's disease. <i>Movement Disorders</i> , 2017 , 32, 1174-1182	7	36
159	Subthalamic nucleus beta and gamma activity is modulated depending on the level of imagined grip force. <i>Experimental Neurology</i> , 2017 , 293, 53-61	5.7	20
158	Stimulating at the right time: phase-specific deep brain stimulation. <i>Brain</i> , 2017 , 140, 132-145	11.2	138
157	Comparison of oscillatory activity in subthalamic nucleus in Parkinson's disease and dystonia. <i>Neurobiology of Disease</i> , 2017 , 98, 100-107	7.5	31
156	GBA-Associated Parkinson's Disease: Progression in a Deep Brain Stimulation Cohort. <i>Journal of Parkinsonis Disease</i> , 2017 , 7, 635-644	5.3	30
155	Functional Connectivity of the Pedunculopontine Nucleus and Surrounding Region in Parkinson's Disease. <i>Cerebral Cortex</i> , 2017 , 27, 54-67	5.1	18
154	Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic networks. <i>ELife</i> , 2017 , 6,	8.9	38
153	Uncovering the underlying mechanisms and whole-brain dynamics of deep brain stimulation for Parkinson's disease. <i>Scientific Reports</i> , 2017 , 7, 9882	4.9	55
152	16 A randomised controlled trial of deep brain stimulation in obsessive compulsive disorder: a comparison of ventral capsule/ventral striatum and subthalamic nucleus targets. <i>Journal of</i>	5.5	3

(2016-2017)

151	Pathophysiological heterogeneity in Parkinson's disease: Neurophysiological insights from LRRK2 mutations. <i>Movement Disorders</i> , 2017 , 32, 1333-1335	7	5	
150	Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson's disease. <i>NeuroImage</i> , 2017 , 158, 332-345	7.9	131	
149	Exenatide once weekly versus placebo in Parkinson's disease: a randomised, double-blind, placebo-controlled trial. <i>Lancet, The</i> , 2017 , 390, 1664-1675	40	352	
148	Refining the Deep Brain Stimulation Target within the Limbic Globus Pallidus Internus for Tourette Syndrome. <i>Stereotactic and Functional Neurosurgery</i> , 2017 , 95, 251-258	1.6	21	
147	Loss of phosphodiesterase 4 in Parkinson disease: Relevance to cognitive deficits. <i>Neurology</i> , 2017 , 89, 586-593	6.5	24	
146	Autonomic Dysfunction in Early Parkinson's Disease: Results from the United Kingdom Tracking Parkinson's Study. <i>Movement Disorders Clinical Practice</i> , 2017 , 4, 509-516	2.2	18	
145	Oscillatory Beta Power Correlates With Akinesia-Rigidity in the Parkinsonian Subthalamic Nucleus. <i>Movement Disorders</i> , 2017 , 32, 174-175	7	38	
144	Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. <i>Brain</i> , 2017 , 140, 3191-3203	11.2	209	
143	Technologies Assessing Limb Bradykinesia in Parkinson's Disease. <i>Journal of Parkinsonis Disease</i> , 2017 , 7, 65-77	5.3	31	
142	Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease: The Effect of Varying Stimulation Parameters. <i>Journal of Parkinsonis Disease</i> , 2017 , 7, 235-245	5.3	48	
141	Is Exenatide a Treatment for Parkinson's Disease?. <i>Journal of Parkinsonis Disease</i> , 2017 , 7, 451-458	5.3	22	
140	PO088 Nigral iron susceptibility in parkinson® disease: a longitudinal study. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2017 , 88, A34.4-A35	5.5		
139	Apathy and Reduced Speed of Processing Underlie Decline in Verbal Fluency following DBS. <i>Behavioural Neurology</i> , 2017 , 2017, 7348101	3	12	
138	Estimating the causal influence of body mass index on risk of Parkinson disease: A Mendelian randomisation study. <i>PLoS Medicine</i> , 2017 , 14, e1002314	11.6	93	
137	Subthalamic nucleus gamma activity increases not only during movement but also during movement inhibition. <i>ELife</i> , 2017 , 6,	8.9	27	
136	A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease. <i>Science Translational Medicine</i> , 2016 , 8, 341ra76	17.5	77	
135	Human subthalamic nucleus-medial frontal cortex theta phase coherence is involved in conflict and error related cortical monitoring. <i>NeuroImage</i> , 2016 , 137, 178-187	7.9	46	
134	Aberrant nigral diffusion in Parkinson's disease: A longitudinal diffusion tensor imaging study. <i>Movement Disorders</i> , 2016 , 31, 1020-6	7	38	

133	Vocal tics in Tourette's syndrome. Lancet Neurology, The, 2016, 15, e1	24.1	3
132	Bilateral adaptive deep brain stimulation is effective in Parkinson's disease. <i>Journal of Neurology,</i> Neurosurgery and Psychiatry, 2016 , 87, 717-21	5.5	183
131	Deletions at 22q11.2 in idiopathic Parkinson's disease: a combined analysis of genome-wide association data. <i>Lancet Neurology, The</i> , 2016 , 15, 585-96	24.1	59
130	Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease. <i>Brain</i> , 2016 , 139, 1482-96	11.2	130
129	Development and external validation of a prognostic model in newly diagnosed Parkinson disease. <i>Neurology</i> , 2016 , 86, 986-93	6.5	31
128	Comparative epidemiology of incident Parkinson's disease in Cambridgeshire, UK. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2016 , 87, 1034-6	5.5	5
127	Subthalamic nucleus phase-amplitude coupling correlates with motor impairment in Parkinson's disease. <i>Clinical Neurophysiology</i> , 2016 , 127, 2010-9	4.3	109
126	Analysis of simultaneous MEG and intracranial LFP recordings during Deep Brain Stimulation: a protocol and experimental validation. <i>Journal of Neuroscience Methods</i> , 2016 , 261, 29-46	3	36
125	The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action. <i>Drug Discovery Today</i> , 2016 , 21, 802-18	8.8	168
124	Decisions Made with Less Evidence Involve Higher Levels of Corticosubthalamic Nucleus Theta Band Synchrony. <i>Journal of Cognitive Neuroscience</i> , 2016 , 28, 811-25	3.1	11
123	Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy. <i>American Journal of Human Genetics</i> , 2016 , 98, 500-	·5 1 13	225
122	Subcortical evoked activity and motor enhancement in Parkinson's disease. <i>Experimental Neurology</i> , 2016 , 277, 19-26	5.7	8
121	Decoding gripping force based on local field potentials recorded from subthalamic nucleus in humans. <i>ELife</i> , 2016 , 5,	8.9	28
120	Author response: Decoding gripping force based on local field potentials recorded from subthalamic nucleus in humans 2016 ,		2
119	Variation in Recent Onset Parkinson's Disease: Implications for Prodromal Detection. <i>Journal of Parkinsonis Disease</i> , 2016 , 6, 289-300	5.3	18
118	The Parkinsonian Subthalamic Network: Measures of Power, Linear, and Non-linear Synchronization and their Relationship to L-DOPA Treatment and OFF State Motor Severity. <i>Frontiers in Human Neuroscience</i> , 2016 , 10, 517	3.3	18
117	The International Deep Brain Stimulation Registry and Database for Gilles de la Tourette Syndrome: How Does It Work?. <i>Frontiers in Neuroscience</i> , 2016 , 10, 170	5.1	44
116	The Use of Deep Brain Stimulation in Tourette Syndrome. <i>Brain Sciences</i> , 2016 , 6,	3.4	33

115	Bilateral Deep Brain Stimulation of the Globus Pallidus Pars Interna in a Patient with Variant Ataxia-Telangiectasia. <i>Movement Disorders Clinical Practice</i> , 2016 , 3, 405-408	2.2	8
114	Statins are underused in recent-onset Parkinson's disease with increased vascular risk: findings from the UK Tracking Parkinson's and Oxford Parkinson's Disease Centre (OPDC) discovery cohorts. Journal of Neurology, Neurosurgery and Psychiatry, 2016 , 87, 1183-1190	5.5	19
113	Adaptive deep brain stimulation for Parkinson's disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2016 , 87, 1388-1389	5.5	130
112	Letter to the Editor: A paradigm shift toward MRI-guided and MRI-verified DBS surgery. <i>Journal of Neurosurgery</i> , 2016 , 124, 1135-7	3.2	12
111	Subthalamic nucleus deep brain stimulation induces impulsive action when patients with Parkinson's disease act under speed pressure. <i>Experimental Brain Research</i> , 2016 , 234, 1837-1848	2.3	26
110	Equating scores of the University of Pennsylvania Smell Identification Test and Sniffin' Sticks test in patients with Parkinson's disease. <i>Parkinsonism and Related Disorders</i> , 2016 , 33, 96-101	3.6	36
109	Challenges in detecting disease modification in Parkinson's disease clinical trials. <i>Parkinsonism and Related Disorders</i> , 2016 , 32, 1-11	3.6	38
108	Dopaminergic treatment modulates sensory attenuation at the onset of the movement in Parkinson's disease: A test of a new framework for bradykinesia. <i>Movement Disorders</i> , 2016 , 31, 143-6	7	19
107	Subthalamic nucleus local field potential activity helps encode motor effort rather than force in parkinsonism. <i>Journal of Neuroscience</i> , 2015 , 35, 5941-9	6.6	27
106	Varying time-course of effects of high frequency stimulation of sub-regions of the globus pallidus in patients with parkinson's disease. <i>Parkinsonism and Related Disorders</i> , 2015 , 21, 597-602	3.6	7
105	Loss of phosphodiesterase 10A expression is associated with progression and severity in Parkinson's disease. <i>Brain</i> , 2015 , 138, 3003-15	11.2	74
104	Bilateral globus pallidus stimulation for severe Tourette's syndrome: a double-blind, randomised crossover trial. <i>Lancet Neurology, The</i> , 2015 , 14, 595-605	24.1	127
103	Parkinson's disease dementia: a neural networks perspective. <i>Brain</i> , 2015 , 138, 1454-76	11.2	253
102	Deep brain stimulation of the subthalamic nucleus: histological verification and 9.4-T MRI correlation. <i>Acta Neurochirurgica</i> , 2015 , 157, 2143-7	3	10
101	Different effects of dopaminergic medication on perceptual decision-making in Parkinson's disease as a function of task difficulty and speed-accuracy instructions. <i>Neuropsychologia</i> , 2015 , 75, 577-87	3.2	26
100	The ongoing pursuit of neuroprotective therapies in Parkinson disease. <i>Nature Reviews Neurology</i> , 2015 , 11, 25-40	15	154
99	Tourette syndrome deep brain stimulation: a review and updated recommendations. <i>Movement Disorders</i> , 2015 , 30, 448-71	7	191
98	Writer's Cramp as the First Symptom of Spinocerebellar Ataxia 14. <i>Movement Disorders Clinical Practice</i> , 2015 , 2, 41-42	2.2	2

97	Tracking Parkinson's: Study Design and Baseline Patient Data. <i>Journal of Parkinsonis Disease</i> , 2015 , 5, 947-59	5.3	31
96	A missense mutation in KCTD17 causes autosomal dominant myoclonus-dystonia. <i>American Journal of Human Genetics</i> , 2015 , 96, 938-47	11	77
95	Deep brain stimulation for movement disorders: update on recent discoveries and outlook on future developments. <i>Journal of Neurology</i> , 2015 , 262, 2583-95	5.5	26
94	Tremor Reduction by Deep Brain Stimulation Is Associated With Gamma Power Suppression in Parkinson's Disease. <i>Neuromodulation</i> , 2015 , 18, 349-54	3.1	47
93	Do we need to revise the tripartite subdivision hypothesis of the human subthalamic nucleus (STN)? Response to Alkemade and Forstmann. <i>NeuroImage</i> , 2015 , 110, 1-2	7.9	24
92	Can Parkinson's disease be cured by stimulating neurogenesis?. <i>Journal of Clinical Investigation</i> , 2015 , 125, 978-80	15.9	9
91	The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices. <i>PLoS ONE</i> , 2015 , 10, e0129077	3.7	33
90	Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity. <i>Brain</i> , 2014 , 137, 1130-44	11.2	157
89	Long-term outcome of subthalamic nucleus deep brain stimulation for Parkinson's disease using an MRI-guided and MRI-verified approach. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2014 , 85, 14	19-25	120
88	Controlling Parkinson's disease with adaptive deep brain stimulation. <i>Journal of Visualized Experiments</i> , 2014 ,	1.6	16
87	Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson's disease. Journal of Parkinsonis Disease, 2014 , 4, 337-44	5.3	154
86	In a rush to decide: deep brain stimulation and dopamine agonist therapy in Parkinson's disease. Journal of Parkinsonis Disease, 2014 , 4, 579-83	5.3	8
85	Perceptual decision-making in patients with Parkinson's disease. <i>Journal of Psychopharmacology</i> , 2014 , 28, 1149-54	4.6	17
84	The nature of tremor circuits in parkinsonian and essential tremor. <i>Brain</i> , 2014 , 137, 3223-34	11.2	65
83	Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. <i>Brain</i> , 2014 , 137, 1481-95	11.2	201
82	Predictive factors of speech intelligibility following subthalamic nucleus stimulation in consecutive patients with Parkinson's disease. <i>Movement Disorders</i> , 2014 , 29, 532-8	7	59
81	Lysine 27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the Parkin ubiquitin ligase. <i>Journal of Biological Chemistry</i> , 2014 , 289, 14569-82	5.4	120
80	Human subthalamic nucleus in movement error detection and its evaluation during visuomotor adaptation. <i>Journal of Neuroscience</i> , 2014 , 34, 16744-54	6.6	40

79	Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurology, 2014 , 71, 83-7	17.2	205
78	Midline frontal cortex low-frequency activity drives subthalamic nucleus oscillations during conflict. <i>Journal of Neuroscience</i> , 2014 , 34, 7322-33	6.6	98
77	Exenatide as a potential treatment for patients with Parkinson's disease: first steps into the clinic. <i>Alzheimeris and Dementia</i> , 2014 , 10, S38-46	1.2	30
76	Influence of single nucleotide polymorphisms in COMT, MAO-A and BDNF genes on dyskinesias and levodopa use in Parkinson's disease. <i>Neurodegenerative Diseases</i> , 2014 , 13, 24-8	2.3	40
75	Adaptive deep brain stimulation in advanced Parkinson disease. <i>Annals of Neurology</i> , 2013 , 74, 449-57	9.4	759
74	Successful pallidal deep brain stimulation in 15-year-old with Tourette syndrome: 2-year follow-up. <i>Journal of Neurology</i> , 2013 , 260, 2417-9	5.5	18
73	The glucocerobrosidase E326K variant predisposes to Parkinson's disease, but does not cause Gaucher's disease. <i>Movement Disorders</i> , 2013 , 28, 232-236	7	86
72	The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia?. <i>Neuroscience and Biobehavioral Reviews</i> , 2013 , 37, 2676-88	9	98
71	Understanding DCM: ten simple rules for the clinician. <i>NeuroImage</i> , 2013 , 83, 542-9	7.9	51
70	Glucocerebrosidase mutations influence the natural history of Parkinson's disease in a community-based incident cohort. <i>Brain</i> , 2013 , 136, 392-9	11.2	201
69	Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation. <i>Brain</i> , 2013 , 136, 3062-75	11.2	68
68	Deep brain stimulation as a treatment for chorea-acanthocytosis. <i>Journal of Neurology</i> , 2013 , 260, 303-	5 5.5	12
67	Parkinson's disease: an update on pathogenesis and treatment. <i>Journal of Neurology</i> , 2013 , 260, 1433-4	10 5.5	27
66	Subthalamic nucleus gamma oscillations mediate a switch from automatic to controlled processing: a study of random number generation in Parkinson's disease. <i>NeuroImage</i> , 2013 , 64, 284-9	7.9	18
65	Parkinson's disease, insulin resistance and novel agents of neuroprotection. <i>Brain</i> , 2013 , 136, 374-84	11.2	180
64	The risk of hardware infection in deep brain stimulation surgery is greater at impulse generator replacement than at the primary procedure. <i>Stereotactic and Functional Neurosurgery</i> , 2013 , 91, 56-65	1.6	106
63	A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease. <i>Human Molecular Genetics</i> , 2013 , 22, 1039-49	5.6	96
62	Subthalamic nucleus local field potential activity during the Eriksen flanker task reveals a novel role for theta phase during conflict monitoring. <i>Journal of Neuroscience</i> , 2013 , 33, 14758-66	6.6	72

61	The CamPaIGN study of Parkinson's disease: 10-year outlook in an incident population-based cohort. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2013 , 84, 1258-64	5.5	416
60	TRACKING PARKINSON'S (THE PROBAND STUDY) I NTERIM REPORT FROM THE FIRST 1000 CASES. Journal of Neurology, Neurosurgery and Psychiatry, 2013 , 84, e2.70-e2	5.5	
59	Dopamine agonists rather than deep brain stimulation cause reflection impulsivity in Parkinson's disease. <i>Journal of Parkinsonis Disease</i> , 2013 , 3, 139-44	5.3	34
58	Genotype and phenotype in Parkinson's disease: lessons in heterogeneity from deep brain stimulation. <i>Movement Disorders</i> , 2013 , 28, 1370-5	7	55
57	How can we judge the 'long term' outcomes of novel interventions in Parkinson's disease?. <i>NeuroReport</i> , 2013 , 24, 1005-9	1.7	1
56	Commentary. Movement Disorders, 2013, 28, 739	7	
55	Pallidal stimulation for cervical dystonia does not correct abnormal temporal discrimination. <i>Movement Disorders</i> , 2013 , 28, 1874-7	7	25
54	Image-guided and image-verified deep brain stimulation. <i>Movement Disorders</i> , 2013 , 28, 254	7	12
53	Dopaminergic neuronal imaging in genetic Parkinson's disease: insights into pathogenesis. <i>PLoS ONE</i> , 2013 , 8, e69190	3.7	46
52	Exenatide and the treatment of patients with Parkinson's disease. <i>Journal of Clinical Investigation</i> , 2013 , 123, 2730-6	15.9	268
51	Short and long term outcome of bilateral pallidal stimulation in chorea-acanthocytosis. <i>PLoS ONE</i> , 2013 , 8, e79241	3.7	32
50	Deep brain stimulation in the treatment of chorea. <i>Movement Disorders</i> , 2012 , 27, 357-63	7	49
49	Genetic and pathological links between Parkinson's disease and the lysosomal disorder Sanfilippo syndrome. <i>Movement Disorders</i> , 2012 , 27, 312-5	7	49
48	Image-verified deep brain stimulation reduces risk and cost with no apparent impact on efficacy. <i>Movement Disorders</i> , 2012 , 27, 1585-6; author reply 1586-7	7	16
47	The surgical anatomy of the pedunculopontine nucleus cannot be disputed, buried or exhumed. <i>Acta Neurochirurgica</i> , 2012 , 154, 1531-1533	3	
46	Analysis of ATP13A2 in large neurodegeneration with brain iron accumulation (NBIA) and dystonia-parkinsonism cohorts. <i>Neuroscience Letters</i> , 2012 , 523, 35-8	3.3	11
45	Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. <i>NeuroImage</i> , 2012 , 60, 83-94	7.9	246
44	Reply: Deep brain stimulation in Huntington's disease: A 4-year follow-up case report. <i>Movement Disorders</i> , 2012 , 27, 808-808	7	1

43	Decision making, impulsivity, and addictions: do Parkinson's disease patients jump to conclusions?. <i>Movement Disorders</i> , 2012 , 27, 1137-45	7	68
42	Uncertainty, misunderstanding and the pedunculopontine nucleus. <i>Acta Neurochirurgica</i> , 2012 , 154, 839	9-841	4
41	Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. <i>Journal of Neurosurgery</i> , 2012 , 116, 84-94	3.2	278
40	Movement-related changes in local and long-range synchronization in Parkinson's disease revealed by simultaneous magnetoencephalography and intracranial recordings. <i>Journal of Neuroscience</i> , 2012 , 32, 10541-53	6.6	142
39	Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. <i>Brain</i> , 2012 , 135, 148-60	11.2	120
38	Subthalamic nucleus activity optimizes maximal effort motor responses in Parkinson's disease. <i>Brain</i> , 2012 , 135, 2766-78	11.2	44
37	Therapeutic subthalamic nucleus deep brain stimulation reverses cortico-thalamic coupling during voluntary movements in Parkinson's disease. <i>PLoS ONE</i> , 2012 , 7, e50270	3.7	57
36	The natural history of treated Parkinson's disease in an incident, community based cohort. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2011 , 82, 1112-8	5.5	153
35	Gender distribution of patients with Parkinson's disease treated with subthalamic deep brain stimulation; a review of the 2000-2009 literature. <i>Parkinsonism and Related Disorders</i> , 2011 , 17, 146-9	3.6	31
34	MRI-guided subthalamic nucleus deep brain stimulation without microelectrode recording: can we dispense with surgery under local anaesthesia?. <i>Stereotactic and Functional Neurosurgery</i> , 2011 , 89, 318	- 2 56	70
33	The factor structure of the UPDRS as an index of disease progression in Parkinson's disease. Journal of Parkinsonis Disease, 2011 , 1, 75-82	5.3	10
32	Clinical safety of brain magnetic resonance imaging with implanted deep brain stimulation hardware: large case series and review of the literature. <i>World Neurosurgery</i> , 2011 , 76, 164-72; discussion 69-73	2.1	79
31	Gene therapy: a viable therapeutic strategy for Parkinson's disease?. <i>Journal of Neurology</i> , 2011 , 258, 179-88	5.5	20
30	Urinary incontinence following deep brain stimulation of the pedunculopontine nucleus. <i>Acta Neurochirurgica</i> , 2011 , 153, 2357-60	3	31
29	Deep brain stimulation for Gilles de la Tourette syndrome: a case series targeting subregions of the globus pallidus internus. <i>Movement Disorders</i> , 2011 , 26, 1922-30	7	94
28	Functional imaging of subthalamic nucleus deep brain stimulation in Parkinson's disease. <i>Movement Disorders</i> , 2011 , 26, 1835-43	7	33
27	Treatment of dysarthria following subthalamic nucleus deep brain stimulation for Parkinson's disease. <i>Movement Disorders</i> , 2011 , 26, 2434-6	7	27
26	An approach to deep brain stimulation for severe treatment-refractory Tourette syndrome: the UK perspective. <i>British Journal of Neurosurgery</i> , 2011 , 25, 38-44	1	61

25	Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson's disease. <i>Brain</i> , 2011 , 134, 359-74	11.2	304
24	Skewering the subthalamic nucleus via a parietal approach. <i>Stereotactic and Functional Neurosurgery</i> , 2011 , 89, 70-5	1.6	6
23	Which patients with dystonia benefit from deep brain stimulation? A metaregression of individual patient outcomes. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2010 , 81, 1383-9	5.5	147
22	Surgical management of Parkinson's disease. <i>Expert Review of Neurotherapeutics</i> , 2010 , 10, 903-14	4.3	65
21	Minimizing brain shift in stereotactic functional neurosurgery. <i>Operative Neurosurgery</i> , 2010 , 67, ons213-21; discussion ons221	1.6	37
20	Improving targeting in image-guided frame-based deep brain stimulation. <i>Operative Neurosurgery</i> , 2010 , 67, 437-47	1.6	37
19	Early and marked benefit with GPi DBS for Lubag syndrome presenting with rapidly progressive life-threatening dystonia. <i>Movement Disorders</i> , 2009 , 24, 1710-2	7	41
18	Apolipoprotein E genotype as a risk factor for susceptibility to and dementia in Parkinson's disease. Journal of Neurology, 2009 , 256, 493-8	5.5	116
17	No evidence for association between an MAOA functional polymorphism and susceptibility to Parkinson's disease. <i>Journal of Neurology</i> , 2009 , 256, 132-3	5.5	6
16	The distinct cognitive syndromes of Parkinson's disease: 5 year follow-up of the CamPaIGN cohort. <i>Brain</i> , 2009 , 132, 2958-69	11.2	701
15	Tau and alpha-synuclein in susceptibility to, and dementia in, Parkinson's disease. <i>Annals of Neurology</i> , 2007 , 62, 145-53	9.4	223
14	A case of voltage-gated potassium channel antibody-related limbic encephalitis. <i>Nature Clinical Practice Neurology</i> , 2006 , 2, 339-43; quiz following 343		15
13	Cognitive deficits and psychosis in Parkinson's disease: a review of pathophysiology and therapeutic options. <i>CNS Drugs</i> , 2006 , 20, 477-505	6.7	90
12	Mitochondrial DNA haplogroup cluster UKJT reduces the risk of PD. <i>Annals of Neurology</i> , 2005 , 57, 564-	79.4	160
11	A genome wide linkage disequilibrium screen in Parkinson's disease. <i>Journal of Neurology</i> , 2005 , 252, 597-602	5.5	7
10	The BDNF Val66Met polymorphism has a gender specific influence on planning ability in Parkinson's disease. <i>Journal of Neurology</i> , 2005 , 252, 833-8	5.5	90
9	The cognitive ability of an incident cohort of Parkinson's patients in the UK. The CamPaIGN study. <i>Brain</i> , 2004 , 127, 550-60	11.2	523
8	The future challenges in Parkinson's disease. <i>Journal of Neurology</i> , 2004 , 251, 361-5	5.5	1

LIST OF PUBLICATIONS

7	Differentiation and migration of long term expanded human neural progenitors in a partial lesion model of Parkinson's disease. <i>International Journal of Biochemistry and Cell Biology</i> , 2004 , 36, 702-13	5.6	65	
6	A genome-wide screen for association in Hungarian multiple sclerosis. <i>Journal of Neuroimmunology</i> , 2003 , 143, 84-7	3.5	12	
5	A whole genome association study in multiple sclerosis patients from north Portugal. <i>Journal of Neuroimmunology</i> , 2003 , 143, 116-9	3.5	11	
4	The heterogeneity of idiopathic Parkinson's disease. <i>Journal of Neurology</i> , 2002 , 249, 138-45	5.5	149	
3	Vascular parkinsonism: a review of the precision and frequency of the diagnosis. <i>Neuroepidemiology</i> , 2002 , 21, 1-7	5.4	44	
2	The BRadykinesia Akinesia INcoordination (BRAIN) tap test: capturing the sequence effect		1	
1	Neural signatures of pathological hyperdirect pathway activity in Parkinson disease		4	