

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7540837/publications.pdf Version: 2024-02-01

Trela

#	Article	IF	CITATIONS
1	Measurement and modeling of the near-nozzle ambient gas entrainment of high-pressure diesel sprays. Fuel, 2022, 310, 122373.	3.4	9
2	Evaluation of trans-critical transition of single- and multi-component sprays under diesel engine-like conditions. Applied Thermal Engineering, 2022, 202, 117830.	3.0	7
3	Phase Transition of n-Heptane/Ethanol Blends from Subcritical to Supercritical Conditions. International Journal of Heat and Mass Transfer, 2022, 185, 122405.	2.5	9
4	Effects of various discharge strategies on ignition and combustion of lean natural gas mixture under the static and turbulent conditions. Experimental Thermal and Fluid Science, 2022, 133, 110581.	1.5	5
5	A comparison between low- and high-pressure injection dual-fuel modes of diesel-pilot-ignition ammonia combustion engines. Journal of the Energy Institute, 2022, 102, 362-373.	2.7	63
6	An investigation on near-field and far-field characteristics of superheated ammonia spray. Fuel, 2022, 324, 124683.	3.4	19
7	Particle volatility, size distribution and PAH/alkyl-PAH profiles during toluene pyrolysis in a flow reactor. Aerosol Science and Technology, 2022, 56, 819-832.	1.5	5
8	Micro Morphology of Soot Particles Sampled from High Pressure Jet Flames of Diesel from Direct Coal Liquefaction. Journal of Thermal Science, 2022, 31, 2155-2170.	0.9	1
9	Experimental study of soot particles characteristics for hydrous ethanol diesel emulsified fuel under diesel-like conditions. Fuel Processing Technology, 2022, 235, 107384.	3.7	5
10	Modeling of diesel spray tip penetration during start-of-injection transients. International Journal of Engine Research, 2021, 22, 3013-3029.	1.4	10
11	Experimental and numerical investigation of low sulfur heavy fuel oil spray characteristics under high temperature and pressure conditions. Fuel, 2021, 286, 119327.	3.4	14
12	Similarity of split-injected fuel sprays for different size diesel engines. International Journal of Engine Research, 2021, 22, 1028-1044.	1.4	11
13	Transcritical evaporation and micro-explosion of ethanol-diesel droplets under diesel engine-like conditions. Fuel, 2021, 284, 118892.	3.4	22
14	Study on three droplet sequential burning characteristics of coal direct liquefied diesel. AIP Advances, 2021, 11, 045034.	0.6	3
15	Influencing factors on the vibrational and rotational temperatures in the spark discharge channel. Energy, 2021, 222, 119995.	4.5	5
16	Design of Cost-Effective and Emission-Aware Power Plant System for Integrated Electric Propulsion Ships. Journal of Marine Science and Engineering, 2021, 9, 684.	1.2	7
17	Quantitative 1-D LIBS measurements of fuel concentration in natural gas jets at high ambient pressure. Experimental Thermal and Fluid Science, 2021, 126, 110401.	1.5	4
18	Laminar burning characteristics of ammonia/hydrogen/air mixtures with laser ignition. International Journal of Hydrogen Energy, 2021, 46, 31879-31893.	3.8	47

Tie Li

#	Article	IF	CITATIONS
19	Spray evolution and thermal pyrolysis of low sulfur heavy fuel oils under high temperatures. Fuel, 2021, 299, 120878.	3.4	3
20	The similarity ratio effects in design of scaled model experiments for marine diesel engines. Energy, 2021, 231, 121116.	4.5	6
21	Modeling of the entire processes of diesel spray tip penetration including the start- and end-of-injection transients. Journal of the Energy Institute, 2021, 98, 271-281.	2.7	10
22	A study of smart thermal insulation coating on improving thermal efficiency in a marine two-stroke low-speed diesel engine. Fuel, 2021, 304, 120760.	3.4	7
23	Injection characteristics and fuel-air mixing process of ammonia jets in a constant volume vessel. Fuel, 2021, 304, 121408.	3.4	23
24	Simulation data for similarity of spray combustion processes in marine low-speed diesel engines. Data in Brief, 2020, 28, 104837.	0.5	4
25	Quantitative evaluation of the breakdown process of spark discharge for spark-ignition engines. Journal Physics D: Applied Physics, 2020, 53, 045501.	1.3	14
26	Scaling liquid penetration in evaporating sprays for different size diesel engines. International Journal of Engine Research, 2020, 21, 1662-1677.	1.4	14
27	Evaporation and condensation characteristics of n-heptane and multi-component diesel droplets under typical spray relevant conditions. International Journal of Heat and Mass Transfer, 2020, 163, 120162.	2.5	13
28	Energy efficiency of integrated electric propulsion for ships – A review. Renewable and Sustainable Energy Reviews, 2020, 134, 110145.	8.2	128
29	On the fuel injection rate profile as boundary conditions for diesel spray combustion simulations. Fuel, 2020, 276, 118026.	3.4	16
30	Time-resolved measurement of the near-nozzle air entrainment of high-pressure diesel spray by high-speed micro-PTV technique. Fuel, 2020, 268, 117343.	3.4	14
31	Characteristics of Ammonia/Hydrogen Premixed Combustion in a Novel Linear Engine Generator. Proceedings (mdpi), 2020, 58, .	0.2	6
32	Characterization of the Morphology and Nanostructure of the Soot Particles Produced within Transient Diesel Reacting Jet Flame by Using Thermophoretic Sampling Technique. Energy & Fuels, 2019, 33, 9124-9137.	2.5	7
33	Scaling spray combustion processes in marine low-speed diesel engines. Fuel, 2019, 258, 116133.	3.4	21
34	Simultaneous measurements of fuel concentration and temperature in gas jets by laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 161, 105706.	1.5	13
35	Characteristics of Particulate Matter Emissions from a Low-Speed Marine Diesel Engine at Various Loads. Environmental Science & Technology, 2019, 53, 11552-11559.	4.6	26
36	Study on the Physicochemical Properties and Spray and Combustion Characteristics of 1-Butanol/Diesel Fuel Blends in a Constant-Volume Combustion Chamber. Energy & Fuels, 2019, 33, 10218-10227.	2.5	10

Tie Li

#	Article	IF	CITATIONS
37	Rotational and vibrational temperatures in the spark plasma by various discharge energies and strategies. Applied Energy, 2019, 251, 113358.	5.1	19
38	Influence of the pressure and temperature on laser induced breakdown spectroscopy for gas concentration measurements. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 155, 24-33.	1.5	21
39	Temporal Evolution of Split-Injected Fuel Spray at Elevated Chamber Pressures. Energies, 2019, 12, 4284.	1.6	8
40	The evolution of soot morphology and nanostructure along axial direction in diesel spray jet flames. Combustion and Flame, 2019, 199, 204-212.	2.8	28
41	Ambient Tracer-LIF for 2-D quantitative measurement of fuel concentration in gas jets. Energy, 2019, 171, 372-384.	4.5	7
42	Modeling diesel spray tip and tail penetrations after end-of-injection. Fuel, 2019, 237, 442-456.	3.4	35
43	Scaling fuel sprays for different size diesel engines. Fuel, 2018, 225, 358-369.	3.4	30
44	Morphology and nano-structure analysis of soot particles sampled from high pressure diesel jet flames under diesel-like conditions. Measurement Science and Technology, 2018, 29, 045801.	1.4	8
45	Impacts of multiple pilot diesel injections on the premixed combustion of ethanol fuel. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2018, 232, 738-754.	1.1	6
46	Effects of Various Discharge Strategies on Ignition of Lean Methane/Air Mixture. , 2018, , .		2
47	Superheat limit and micro-explosion in droplets of hydrous ethanol-diesel emulsions at atmospheric pressure and diesel-like conditions. Energy, 2018, 154, 535-543.	4.5	46
48	Early Pilot Injection Strategies for Reactivity Control in Diesel-ethanol Dual Fuel Combustion. , 2018, ,		7
49	Characteristics of non-evaporating, evaporating and burning sprays of hydrous ethanol diesel emulsified fuels. Fuel, 2017, 191, 251-265.	3.4	65
50	Anatomy of the cooled EGR effects on soot emission reduction in boosted spark-ignited direct-injection engines. Applied Energy, 2017, 190, 43-56.	5.1	37
51	A phenomenological model of knock intensity in spark-ignition engines. Energy Conversion and Management, 2017, 148, 1233-1247.	4.4	26
52	Spray Combustion Characteristics and Soot Emission Reduction of Hydrous Ethanol Diesel Emulsion Fuel Using Color-Ratio Pyrometry. Energies, 2017, 10, 2062.	1.6	19
53	Simultaneous Measurement of the Flame Lift-Off Length on Direct Injection Diesel Sprays Using High Speed Schlieren Imaging and OH Chemiluminescence. , 2017, , .		1
54	Determination of Knock Limited Spark Advance in Engine Cycle Simulation. The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, 2017, 2017.9, A103.	0.1	0

TIE LI

#	Article	IF	CITATIONS
55	A parametric study for enabling reactivity controlled compression ignition (RCCI) operation in diesel engines at various engine loads. Applied Energy, 2016, 175, 389-402.	5.1	88
56	An investigation into the RCCI engine operation under low load and its achievable operational range at different engine speeds. Energy Conversion and Management, 2016, 124, 399-413.	4.4	34
57	Optimization of combustion chamber geometry for natural gas engines with diesel micro-pilot-induced ignition. Energy Conversion and Management, 2016, 122, 552-563.	4.4	51
58	A comparison between Miller and five-stroke cycles for enabling deeply downsized, highly boosted, spark-ignition engines with ultra expansion. Energy Conversion and Management, 2016, 123, 140-152.	4.4	41
59	Fuel conversion efficiency improvements in a highly boosted spark-ignition engine with ultra-expansion cycle. Energy Conversion and Management, 2015, 103, 448-458.	4.4	22
60	Direct injection of neat n-butanol for enabling clean low temperature combustion in a modern diesel engine. Fuel, 2015, 142, 28-37.	3.4	68
61	Optimization of Compression Ratio of a Boosted PFI SI Engine with Cooled EGR. , 2014, , .		4
62	Influence of fuel properties on operational range and combustion characteristics of premixed diesel combustion with high volatility fuel. International Journal of Engine Research, 2014, 15, 557-564.	1.4	4
63	Combined effects of cooled EGR and a higher geometric compression ratio on thermal efficiency improvement of a downsized boosted spark-ignition direct-injection engine. Energy Conversion and Management, 2014, 78, 65-73.	4.4	116
64	The Miller cycle effects on improvement of fuel economy in a highly boosted, high compression ratio, direct-injection gasoline engine: EIVC vs. LIVC. Energy Conversion and Management, 2014, 79, 59-65.	4.4	129
65	A predictive model for knock onset in spark-ignition engines with cooled EGR. Energy Conversion and Management, 2014, 87, 946-955.	4.4	83
66	Thermodynamic analysis of EGR effects on the first and second law efficiencies of a boosted spark-ignited direct-injection gasoline engine. Energy Conversion and Management, 2013, 70, 130-138.	4.4	69
67	Effects of EGR and Pilot Injection on Characteristics of Combustion and Emissions of Diesel Engines with Low Ignitability Fuel. , 2012, , .		0
68	OS2-5 Soot Emission Reduction Using Cooled EGR for a Boosted Spark-Ignition Direct-Injection (SIDI) Engine(OS2 EGR combustion,Organized Session Papers). The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, 2012, 2012.8, 98-103.	0.1	6
69	HC1-2 Influence of Fuel Properties on Operational Range and Combustion Characteristics of Premixed Diesel Combustion with High Volatility Fuel(HC: HCCI Combustion,General Session Papers). The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines. 2012, 2012.8, 392-397.	0.1	0
70	Effect of Fuel Ignitability on the Stable Operating Range of Premixed Diesel Combustion. 880-02 Nihon Kikai Gakkai RonbunshÁ« Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2011, 77, 1844-1851.	0.2	0
71	Application of Low Cetane Number Fuels in Diesel Engines. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2011, 77, 1852-1857.	0.2	0
72	Droplet size distribution and evaporation characteristics of fuel spray by a swirl type atomizer. Fuel, 2011, 90, 2367-2376.	3.4	83

Tie Li

#	Article	IF	CITATIONS
73	Effect of Two-Stage Injections on Unburned Hydrocarbon and Carbon Monoxide Emissions from Ultra-High EGR Low Temperature Diesel Combustion(Thermal Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2010, 76, 1004-1009.	0.2	0
74	Analysis of Chemical Kinetics of the Trade-off between Soot and Nitrogen Oxides in Diesel Combustion(Thermal Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2010, 76, 2280-2285.	0.2	0
75	Effects of ethyl tert-butyl ether addition to diesel fuel on characteristics of combustion and exhaust emissions of diesel engines. Fuel, 2009, 88, 2017-2024.	3.4	29
76	Characteristics of Nano-Particulate Matter from Ultra-High EGR Low Temperature Diesel Combustion. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2008, 74, 1199-1204.	0.2	1
77	DE1-1: Effects of In-Cylinder Temperature and Fuel-Air Mixing on Smokeless Low Temperature Diesel Combustion(DE: Diesel Engine Combustion,General Session Papers). The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, 2008, 2008,7, 135-142.	0.1	14
78	Characteristics of Unregulated Toxic Emissions from Ultra-High EGR Low Temperature Diesel Combustion and Effects of Exhaust Catalysts. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2007, 73, 1129-1134.	0.2	9
79	Improvements in Low Temperature Diesel Combustion with Blending ETBE to Diesel Fuel. , 2007, , .		2
80	Dependence of Ultra-High EGR Low Temperature Diesel Combustion on Fuel Properties. , 2006, , .		34
81	The Dependence of Ultra-High EGR and Low Oxygen Diesel Combustion on Fuel Properties. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2006, 72, 1857-1862.	0.2	2
82	The Dependence of Ultra-High EGR and Low Oxygen Diesel Combustion on Fuel Injection and Compression Ratio. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2006, 72, 543-549.	0.2	1
83	Enhancement of Stratified Charge for DISI Engines through Split Injection(Effect and Its Mechanism). JSME International Journal Series B, 2005, 48, 687-694.	0.3	21
84	CHARACTERIZATION OF INITIAL SPRAY FROM A D.I. GASOLINE INJECTOR BY HOLOGRAPHY AND LASER DIFFRACTION METHOD;. , 2004, 14, 477-494.		16
85	Characterization of Mixture Formation Processes in DI Gasoline Engine Sprays with Split Injection Strategy via Laser Absorption and Scattering (LAS) Technique. , 2003, , .		8
86	Quantitative Measurement of Liquid and Vapor Phase Concentration Distributions in a D.I. Gasoline Spray by the Laser Absorption Scattering (LAS) Technique. , 0, , .		18
87	Characterization of Mixture Formation Processes in D.I. Gasoline Sprays by the Laser Absorption Scattering (LAS) Technique - Effect of Injection Conditions. , 0, , .		2
88	An Insight Into Effect of Split Injection on Mixture Formation and Combustion of DI Gasoline Engines. , 0, , .		16
89	Dependence of Ultra-High ECR and Low Temperature Diesel Combustion on Fuel Injection Conditions and Compression Ratio. , 0, , .		36
90	Characterization of Low Temperature Diesel Combustion with Various Dilution Gases. , 0, , .		25

TIE LI

#	Article	IF	CITATIONS
91	Effect of Exhaust Catalysts on Regulated and Unregulated Emissions from Low Temperature Diesel Combustion with High Rates of Cooled EGR. SAE International Journal of Fuels and Lubricants, 0, 1, 274-282.	0.2	7
92	Characteristics of Smokeless Low Temperature Diesel Combustion in Various Fuel-Air Mixing and Expansion of Operating Load Range. , 0, , .		34
93	Analysis of the Trade-off between Soot and Nitrogen Oxides in Diesel-Like Combustion by Chemical Kinetic Calculation. SAE International Journal of Engines, 0, 5, 94-101.	0.4	30
94	Flame Area Correlations with Heat Release at Early Flame Development of Combustion Process in a Spark-Ignition Direct-Injection Engine Using Gasoline, Ethanol and Butanol. , 0, , .		26
95	Suitability Study of n-Butanol for Enabling PCCI and HCCI and RCCI Combustion on a High Compression-ratio Diesel Engine. , 0, , .		30
96	Analysis of Thermal Efficiency Improvement of a Highly Boosted, High Compression Ratio, Direct-Injection Gasoline Engine with LIVC and EIVC at Partial and Full Loads. , 0, , .		10
97	Measurement of Temperature and Soot (KL) Distributions in Spray Flames of Diesel-Butanol Blends by Two-Color Method Using High-Speed RGB Video Camera. , 0, , .		7
98	A Feasibility Study of Using DI Butanol as an Ignition Source for Dual-Fuel Combustion. , 0, , .		1
99	Theoretical Study on Similarity ofÂDieselÂCombustion. , 0, , .		7
100	Preliminary Testing of n-Butanol HCCI on High Compression Ratio Diesel Engines. , 0, , .		5
101	Scaled Model Experiments for Marine Low-Speed Diesel Engines. , 0, , .		1
102	Combustion Characterization of Neat n-Butanol in an SI Engine. , 0, , .		5
103	Experimental Study on the Characteristics of Short Circuits and Restrikes of Spark Channels. , 0, , .		4
104	Application of the Newly Developed KLSA Model into Optimizing the Compression Ratio of a Turbocharged SI Engine with Cooled EGR. , 0, , .		0
105	Energy Management Optimization for Plug-In Hybrid Electric Vehicles Based on Real-World Driving Data. , 0, , .		2