List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7540792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nature Medicine, 2015, 21, 512-517.	15.2	536
2	MicroRNA-9 Controls the Expression of Granuphilin/Slp4 and the Secretory Response of Insulin-producing Cells. Journal of Biological Chemistry, 2006, 281, 26932-26942.	1.6	333
3	Alterations in MicroRNA Expression Contribute to Fatty Acid–Induced Pancreatic β-Cell Dysfunction. Diabetes, 2008, 57, 2728-2736.	0.3	331
4	Involvement of MicroRNAs in the Cytotoxic Effects Exerted by Proinflammatory Cytokines on Pancreatic β-Cells. Diabetes, 2010, 59, 978-986.	0.3	288
5	MicroRNAs contribute to compensatory \hat{l}^2 cell expansion during pregnancy and obesity. Journal of Clinical Investigation, 2012, 122, 3541-3551.	3.9	148
6	Exendin-4 Protects β-Cells From Interleukin-1β–Induced Apoptosis by Interfering With the c-Jun NH2-Terminal Kinase Pathway. Diabetes, 2008, 57, 1205-1215.	0.3	134
7	Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells. Diabetologia, 2007, 50, 1304-1314.	2.9	130
8	Loss-of-function mutations in ADCY3 cause monogenic severe obesity. Nature Genetics, 2018, 50, 175-179.	9.4	122
9	Risk prediction of prevalent diabetes in a Swiss population using a weighted genetic score—the CoLaus Study. Diabetologia, 2009, 52, 600-608.	2.9	107
10	Anatomy of a Homeoprotein Revealed by the Analysis of Human MODY3 Mutations. Journal of Biological Chemistry, 1999, 274, 35639-35646.	1.6	90
11	Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL. PLoS ONE, 2016, 11, e0163046.	1.1	75
12	Photothermally triggered on-demand insulin release from reduced graphene oxide modified hydrogels. Journal of Controlled Release, 2017, 246, 164-173.	4.8	70
13	Critical Role of the Transcriptional Repressor Neuron-restrictive Silencer Factor in the Specific Control of Connexin36 in Insulin-producing Cell Lines. Journal of Biological Chemistry, 2003, 278, 53082-53089.	1.6	65
14	Complexin I regulates glucose-induced secretion in pancreatic β-cells. Journal of Cell Science, 2004, 117, 2239-2247.	1.2	64
15	Increased Hepatic PDGF-AA Signaling Mediates Liver Insulin Resistance in Obesity-Associated Type 2 Diabetes. Diabetes, 2018, 67, 1310-1321.	0.3	64
16	ICER induced by hyperglycemia represses the expression of genes essential for insulin exocytosis. EMBO Journal, 2006, 25, 977-986.	3.5	63
17	Transdermal skin patch based on reduced graphene oxide: A new approach for photothermal triggered permeation of ondansetron across porcine skin. Journal of Controlled Release, 2017, 245, 137-146.	4.8	63
18	Expression and functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes contributing to human insulin secretion. Molecular Metabolism, 2017, 6, 459-470.	3.0	55

#	Article	IF	CITATIONS
19	The c-Jun N-terminal kinase JNK participates in cytokine- and isolation stress-induced rat pancreatic islet apoptosis. Diabetologia, 2007, 50, 1660-1669.	2.9	53
20	Role of MicroRNAs in Islet Beta-Cell Compensation and Failure during Diabetes. Journal of Diabetes Research, 2014, 2014, 1-12.	1.0	50
21	Functional significance of repressor element 1 silencing transcription factor (REST) target genes in pancreatic beta cells. Diabetologia, 2008, 51, 1429-1439.	2.9	43
22	ICER-1γ Overexpression Drives Palmitate-mediated Connexin36 Down-regulation in Insulin-secreting Cells. Journal of Biological Chemistry, 2008, 283, 5226-5234.	1.6	43
23	The Transcriptional Repressor REST Determines the Cell-Specific Expression of the Human MAPK8IP1 Gene Encoding IB1 (JIP-1). Molecular and Cellular Biology, 2001, 21, 7256-7267.	1.1	42
24	JNK3 is abundant in insulin-secreting cells and protects against cytokine-induced apoptosis. Diabetologia, 2009, 52, 1871-1880.	2.9	42
25	Role of the JNK-interacting protein 1/islet brain 1 in cell degeneration in Alzheimer disease and diabetes. Brain Research Bulletin, 2009, 80, 274-281.	1.4	39
26	A unique set of SH3–SH3 interactions controls IB1 homodimerization. EMBO Journal, 2006, 25, 785-797.	3.5	38
27	Identification of seven novel nucleotide variants in the hepatocyte nuclear factor-1? (TCF1) promoter region in MODY patients. Human Mutation, 2000, 15, 173-180.	1.1	36
28	The Repressor Element Silencing Transcription Factor (REST)-mediated Transcriptional Repression Requires the Inhibition of Sp1. Journal of Biological Chemistry, 2005, 280, 401-407.	1.6	33
29	Role for inducible cAMP early repressor in promoting pancreatic beta cell dysfunction evoked by oxidative stress in human and rat islets. Diabetologia, 2011, 54, 2337-2346.	2.9	30
30	Near-infrared light activatable hydrogels for metformin delivery. Nanoscale, 2019, 11, 15810-15820.	2.8	30
31	Electrothermal patches driving the transdermal delivery of insulin. Nanoscale Horizons, 2020, 5, 663-670.	4.1	30
32	IB1/JIP-1 controls JNK activation and increased during prostatic LNCaP cells neuroendocrine differentiation. Cellular Signalling, 2005, 17, 929-939.	1.7	29
33	Neuronal traits are required for glucose-induced insulin secretion. FEBS Letters, 2004, 565, 133-138.	1.3	28
34	The impact of chemical engineering and technological advances on managing diabetes: present and future concepts. Chemical Society Reviews, 2021, 50, 2102-2146.	18.7	28
35	Neurotensin is a regulator of insulin secretion in pancreatic beta-cells. International Journal of Biochemistry and Cell Biology, 2010, 42, 1681-1688.	1.2	26
36	Electrochemically triggered release of human insulin from an insulin-impregnated reduced graphene oxide modified electrode. Chemical Communications, 2015, 51, 14167-14170.	2.2	26

#	Article	IF	CITATIONS
37	Impaired histone deacetylases 5 and 6 expression mimics the effects of obesity and hypoxia on adipocyte function. Molecular Metabolism, 2016, 5, 1200-1207.	3.0	25
38	The Class I Histone Deacetylase Inhibitor MS-275 Prevents Pancreatic Beta Cell Death Induced by Palmitate. Journal of Diabetes Research, 2014, 2014, 1-7.	1.0	24
39	Role of the transcriptional factor C/EBPβ in free fatty acid-elicited β-cell failure. Molecular and Cellular Endocrinology, 2009, 305, 47-55.	1.6	23
40	Insulin impregnated reduced graphene oxide/Ni(OH)2 thin films for electrochemical insulin release and glucose sensing. Sensors and Actuators B: Chemical, 2016, 237, 693-701.	4.0	23
41	Mechanisms controlling the expression of the components of the exocytotic apparatus under physiological and pathological conditions. Biochemical Society Transactions, 2006, 34, 696-700.	1.6	22
42	KAT2B Is Required for Pancreatic Beta Cell Adaptation to Metabolic Stress by Controlling the Unfolded Protein Response. Cell Reports, 2016, 15, 1051-1061.	2.9	22
43	Innovative transdermal delivery of insulin using gelatin methacrylate-based microneedle patches in mice and mini-pigs. Nanoscale Horizons, 2022, 7, 174-184.	4.1	21
44	Impaired Expression of the Inducible cAMP Early Repressor Accounts for Sustained Adipose CREB Activity in Obesity. Diabetes, 2011, 60, 3169-3174.	0.3	20
45	Expression of an Uncleavable N-terminal RasGAP Fragment in Insulin-secreting Cells Increases Their Resistance toward Apoptotic Stimuli without Affecting Their Glucose-induced Insulin Secretion. Journal of Biological Chemistry, 2005, 280, 32835-32842.	1.6	19
46	Reduction of Connexin36 Content by ICER-1 Contributes to Insulin-Secreting Cells Apoptosis Induced by Oxidized LDL Particles. PLoS ONE, 2013, 8, e55198.	1.1	19
47	JNK3 Is Required for the Cytoprotective Effect of Exendin 4. Journal of Diabetes Research, 2014, 2014, 1-5.	1.0	17
48	Potentiation of Calcium Influx and Insulin Secretion in Pancreatic Beta Cell by the Specific TREK-1 Blocker Spadin. Journal of Diabetes Research, 2016, 2016, 1-9.	1.0	17
49	The mif gene is transcriptionally regulated by glucose in insulin-secreting cells. Biochemical and Biophysical Research Communications, 2002, 295, 174-181.	1.0	15
50	Carbon quantum dots as a dual platform for the inhibition and light-based destruction of collagen fibers: implications for the treatment of eye floaters. Nanoscale Horizons, 2021, 6, 449-461.	4.1	14
51	Photothermal Activatable Mucoadhesive Fiber Mats for On-Demand Delivery of Insulin via Buccal and Corneal Mucosa. ACS Applied Bio Materials, 2022, 5, 771-778.	2.3	14
52	LEDGF/p75 TATA-Less Promoter Is Driven by the Transcription Factor Sp1. Journal of Molecular Biology, 2011, 414, 177-193.	2.0	13
53	Placental antiangiogenic prolactin fragments are increased in human and rat maternal diabetes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1783-1793.	1.8	12
54	Genetic variation in the hepatocyte nuclear factor-3beta gene (HNF3B) does not contribute to maturity-onset diabetes of the young in French Caucasians. Diabetes, 2000, 49, 306-308.	0.3	11

#	Article	IF	CITATIONS
55	The Map3k12 (Dlk)/JNK3 signaling pathway is required for pancreatic beta-cell proliferation during postnatal development. Cellular and Molecular Life Sciences, 2021, 78, 287-298.	2.4	11
56	Histone deacetylase 9 promoter hypomethylation associated with adipocyte dysfunction is a statin-related metabolic effect. Clinical Epigenetics, 2020, 12, 68.	1.8	10
57	The hairy and enhancer of split 1 is a negative regulator of the repressor element silencer transcription factor. FEBS Letters, 2005, 579, 6199-6204.	1.3	7
58	Sortilin-derived peptides promote pancreatic beta-cell survival through CREB signaling pathway. Pharmacological Research, 2021, 167, 105539.	3.1	7
59	Genetics and molecular biology: HDLs and their multiple ways to protect cells. Current Opinion in Lipidology, 2008, 19, 95-97.	1.2	5
60	Lessons from neonatal \hat{I}^2 -cell epigenomic for diabetes prevention and treatment. Trends in Endocrinology and Metabolism, 2022, 33, 378-389.	3.1	5
61	Evidence for tuning adipocytes ICER levels for obesity care. Adipocyte, 2012, 1, 157-160.	1.3	4
62	Compensatory Mechanisms of Pancreatic Beta Cells: Insights into the Therapeutic Perspectives for Diabetes. Journal of Diabetes Research, 2014, 2014, 1-2.	1.0	4
63	Decompensation of <i>β</i> -Cells in Diabetes: When Pancreatic <i>β</i> -Cells Are on ICE(R). Journal of Diabetes Research, 2014, 2014, 1-7.	1.0	4
64	Physiopathologie du diabète. Revue Francophone Des Laboratoires, 2018, 2018, 26-32.	0.0	4
65	Islet Brain 1 Protects Insulin Producing Cells against Lipotoxicity. Journal of Diabetes Research, 2016, 2016, 1-9.	1.0	2
66	Le marqueur de fibrose et de cancer PDGFA médie les effets de l'hyperinsulinémie sur l'insulino-résistance et la stéatose hépatique chez les sujets obèses diabétiques. Diabetes and Metabolism, 2017, 43, A46-A47.	1.4	0
67	Editorial questions. International Journal of Transgender Health, 2020, 13, 691-693.	1.1	0