List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7539427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Highly Durable, Self-Photosensitized Mononuclear Ruthenium Catalyst for CO2 Reduction. Synlett, 2022, 33, 1137-1141.	1.8	8
2	Selective Reduction of Carboxylic Acids to Alcohols in the Presence of Alcohols by a Dual Bulky Transition-Metal Complex/Lewis Acid Catalyst. ACS Catalysis, 2022, 12, 1957-1964.	11.2	10
3	Phosphorus-Based Organocatalysis for the Dehydrative Cyclization of <i>N</i> -(2-Hydroxyethyl)amides into 2-Oxazolines. Journal of Organic Chemistry, 2022, 87, 243-257.	3.2	6
4	Photocatalytic CO ₂ Reduction Using an Iron–Bipyridyl Complex Supported by Two Phosphines for Improving Catalyst Durability. Organometallics, 2022, 41, 1865-1871.	2.3	7
5	Preparation of a platinum nanoparticle catalyst located near photocatalyst titanium oxide and its catalytic activity to convert benzyl alcohols to the corresponding ethers. RSC Advances, 2021, 11, 22230-22237.	3.6	2
6	C(sp ³)–H bond functionalization with styrenes <i>via</i> hydrogen-atom transfer to an aqueous hydroxyl radical under photocatalysis. Green Chemistry, 2021, 23, 3575-3580.	9.0	17
7	Development of Effective Bidentate Diphosphine Ligands of Ruthenium Catalysts toward Practical Hydrogenation of Carboxylic Acids. Bulletin of the Chemical Society of Japan, 2021, 94, 1510-1524.	3.2	3
8	Recent Advances in Light-Driven Carbon–Carbon Bond Formation via Carbon Dioxide Activation. Synthesis, 2021, 53, 3263-3278.	2.3	4
9	Catalytic Hydrogenation of Nâ€protected αâ€Amino Acids Using Ruthenium Complexes with Monodentate Phosphine Ligands. Advanced Synthesis and Catalysis, 2020, 362, 424-429.	4.3	8
10	Reaction of H ₂ with mitochondria-relevant metabolites using a multifunctional molecular catalyst. Science Advances, 2020, 6, .	10.3	11
11	Photocatalytic CO ₂ Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid. Journal of the American Chemical Society, 2020, 142, 10261-10266.	13.7	90
12	Tris(o-phenylenedioxy)cyclotriphosphazene as a Promoter for the Formation of Amide Bonds Between Aromatic Acids and Amines. Synthesis, 2020, 52, 3253-3262.	2.3	7
13	Development of Catalytic Reduction of Renewable Carbon Resources Using Well-Elaborated Organometallic Complexes with PNNP Tetradentate Ligands. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 856-866.	0.1	2
14	Pd/TiO ₂ -Photocatalyzed Self-Condensation of Primary Amines To Afford Secondary Amines at Ambient Temperature. Organic Letters, 2019, 21, 341-344.	4.6	19
15	N-Alkylation of functionalized amines with alcohols using a copper–gold mixed photocatalytic system. Scientific Reports, 2018, 8, 6931.	3.3	38
16	Photocatalytic hydrogenolysis of allylic alcohols for rapid access to platform chemicals and fine chemicals. Pure and Applied Chemistry, 2018, 90, 167-174.	1.9	6
17	Catalytic hydrogenation of carboxylic acids using low-valent and high-valent metal complexes. Chemical Communications, 2018, 54, 13319-13330.	4.1	24
18	Photocatalytic N-Methylation of Amines over Pd/TiO ₂ for the Functionalization of Heterocycles and Pharmaceutical Intermediates. ACS Sustainable Chemistry and Engineering, 2018, 6, 15419-15424.	6.7	44

#	Article	IF	CITATIONS
19	Diboron-Catalyzed Dehydrative Amidation of Aromatic Carboxylic Acids with Amines. Organic Letters, 2018, 20, 4397-4400.	4.6	73
20	Dehydrogenation of Primary Aliphatic Alcohols by Au/TiO ₂ Photocatalysts. Chemistry Letters, 2017, 46, 580-582.	1.3	13
21	Multifaceted catalytic hydrogenation of amides via diverse activation of a sterically confined bipyridine–ruthenium framework. Scientific Reports, 2017, 7, 1586.	3.3	43
22	Catalytic transformation of functionalized carboxylic acids using multifunctional rhenium complexes. Scientific Reports, 2017, 7, 3425.	3.3	30
23	Photocatalytic Transfer Hydrogenolysis of Allylic Alcohols on Pd/TiO ₂ : A Shortcut to (<i>S</i>)â€(+)â€Lavandulol. Chemistry - A European Journal, 2017, 23, 18025-18032.	3.3	15
24	Versatile Ruthenium Complex "RuPCY―for Directed Catalytic Hydrogen Management in Organic Synthesis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 1078-1089.	0.1	6
25	Investigation of the Corey Bromolactamization with <i>N</i> â€Functionalized Allylamines. Journal of Heterocyclic Chemistry, 2016, 53, 1827-1837.	2.6	1
26	Synthesis of morphan derivatives with additional substituents in 8-position. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2016, 71, 1057-1069.	0.7	2
27	Stereoselective Synthesis of <i>cis</i> , <i>cis</i> â€Configured Perhydroquinoxalineâ€5â€Carbonitrile from Cyclohexâ€2â€enâ€1â€ol. Journal of Heterocyclic Chemistry, 2016, 53, 533-536.	2.6	2
28	Hydration of nitriles to amides by a chitin-supported ruthenium catalyst. RSC Advances, 2015, 5, 12152-12160.	3.6	49
29	N-Methylation of Amines with Methanol at Room Temperature. Organic Letters, 2015, 17, 2530-2533.	4.6	112
30	Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids. Nature Communications, 2015, 6, 8140.	12.8	55
31	One-step synthesis of patterned polymer brushes by photocatalytic microcontact printing. Chemical Communications, 2015, 51, 1027-1030.	4.1	20
32	Bromolactamization: Key Step in the Stereoselective Synthesis of Enantiomerically Pure, <i>cis</i> onfigured Perhydropyrroloquinoxalines. Chirality, 2014, 26, 793-800.	2.6	4
33	Catalytic fluoride triggers dehydrative oxazolidinone synthesis from CO ₂ . RSC Advances, 2014, 4, 50851-50857.	3.6	22
34	Synthesis of propylene from renewable allyl alcohol by photocatalytic transfer hydrogenolysis. Catalysis Science and Technology, 2014, 4, 4093-4098.	4.1	14
35	Stereoselective Synthesis of <i>cis</i> , <i>cis</i> onfigured Vicinal Triamines. European Journal of Organic Chemistry, 2014, 2014, 5749-5756.	2.4	5
36	Dehydrative synthesis of chiral oxazolidinones catalyzed by alkali metal carbonates under low pressure of CO2. Tetrahedron Letters, 2013, 54, 4717-4720.	1.4	36

#	Article	IF	CITATIONS
37	Redoxâ€Selective Generation of Aldehydes and H ₂ from Alcohols under Visible Light. Chemistry - A European Journal, 2013, 19, 9452-9456.	3.3	28
38	Reaction of an "Invisible―Frustrated N/B Lewis Pair with Dihydrogen. Chemistry - an Asian Journal, 2013, 8, 212-217.	3.3	33
39	The Dual Role of Ruthenium and Alkali Base Catalysts in Enabling a Conceptually New Shortcut to <i>N</i> -Unsubstituted Pyrroles through Unmasked α-Amino Aldehydes. Organic Letters, 2013, 15, 1436-1439.	4.6	116
40	Catalytic hydrogenation of unactivated amides enabled by hydrogenation of catalyst precursor. Tetrahedron Letters, 2013, 54, 2674-2678.	1.4	66
41	Acetals of <i>N</i> , <i>N</i> -Dimethylformamides: Ambiphilic Behavior in Converting Carbon Dioxide to Dialkyl Carbonates. Chemistry Letters, 2013, 42, 146-147.	1.3	4
42	Aldol condensation of amides using phosphazene-based catalysis. Tetrahedron Letters, 2012, 53, 5445-5448.	1.4	13
43	Double Molecular Recognition with Aminoorganoboron Complexes: Selective Alcoholysis of βâ€Dicarbonyl Derivatives. Angewandte Chemie - International Edition, 2012, 51, 5395-5399.	13.8	15
44	Oneâ€Pot Nitrile Aldolization/Hydration Operation Giving βâ€Hydroxy Carboxamides. Chemistry - an Asian Journal, 2011, 6, 1740-1743.	3.3	44
45	Iron/Amino Acid Catalyzed Direct Nâ€Alkylation of Amines with Alcohols. Angewandte Chemie - International Edition, 2011, 50, 3006-3009.	13.8	213
46	Cu ^I /H ₂ /NaOHâ€Catalyzed Crossâ€Coupling of Two Different Alcohols for Carbon–Carbon Bond Formation: "Borrowing Hydrogen�. Chemistry - A European Journal, 2011, 17, 11146-11151.	3.3	49
47	Selective Nâ€Alkylation of Amines with Alcohols by Using Nonâ€Metalâ€Based Acid–Base Cooperative Catalysis. Chemistry - A European Journal, 2011, 17, 12262-12267.	3.3	52
48	Synthesis of carbonates directly from 1Âatm CO2 and alcohols using CH2Cl2. Tetrahedron, 2010, 66, 9675-9680.	1.9	27
49	Cross-coupling reaction of alcohols for carbon–carbon bond formation using pincer-type NHC/palladium catalysts. Organic and Biomolecular Chemistry, 2010, 8, 896-900.	2.8	124
50	Synthesis of 1,4-Diazabicyclo[3.3.1]nonan-6-ones. Australian Journal of Chemistry, 2009, 62, 1684.	0.9	4
51	Importance of Open Structure of Nonmetal Based Catalyst in Hydrogen Bond Promoted Methanolysis of Activated Amide: Structure Dynamics between Monomer and Dimer Enabling Recombinant Covalent, Dative, and Hydrogen Bonds. Journal of the American Chemical Society, 2009, 131, 8748-8749.	13.7	14
52	Synthesis of a Silanol-substituted Proline Analog as Organocatalyst. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2009, 64, 1169-1175.	0.7	2
53	Rh ^I â€Catalyzed Hydration of Organonitriles under Ambient Conditions. Angewandte Chemie - International Edition, 2008, 47, 3607-3609.	13.8	172
54	RhI-catalyzed aldol-type reaction of organonitriles under mild conditions. Chemical Communications, 2008, , 2212.	4.1	62

#	Article	IF	CITATIONS
55	Aqua-aminoorganoboron Catalyst: Engineering Single Water Molecule to Act as an Acid Catalyst in Nitro Aldol Reaction. Chemistry Letters, 2008, 37, 1294-1295.	1.3	23
56	Development of Organocatalysis Based on the Molecular Design of Pyrrolidine-Brensted Acid Catalysts. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2008, 66, 774-784.	0.1	7
57	Highlyanti-Selective Catalytic Aldol Reactions of Amides with Aldehydes. Journal of the American Chemical Society, 2006, 128, 8704-8705.	13.7	135
58	Aluminum in Organic Synthesis. , 2005, , 189-306.		16
59	Lead in Organic Synthesis. , 2005, , 721-751.		2
60	Asymmetric Vinylogous Direct Aldol Reaction Using Aluminum Tris[2,6-bis(4-alkylphenyl)phenoxide]. Synlett, 2004, 2004, 732-734.	1.8	4
61	Asymmetric Catalysis Special Feature Part I: O-nitroso aldol synthesis: Catalytic enantioselective route to Â-aminooxy carbonyl compounds via enamine intermediate. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5374-5378.	7.1	164
62	Asymmetric Direct Aldol Reaction Assisted by Water and a Proline-Derived Tetrazole Catalyst. Angewandte Chemie - International Edition, 2004, 43, 1983-1986.	13.8	542
63	Chiral Molecular Recognition by Aluminum Tris(2,6-diphenylphenoxide) in an Asymmetric 1,4-Addition. Angewandte Chemie - International Edition, 2004, 43, 994-997.	13.8	35
64	A New Method for the Preparation of Aluminum and Titanium Tris(2,6-diphenylphenoxide) Reagents and Their Application in Organic Synthesis ChemInform, 2004, 35, no.	0.0	0
65	Chiral Molecular Recognition by Aluminum Tris(2,6-diphenylphenoxide) in an Asymmetric 1,4-Addition ChemInform, 2004, 35, no.	0.0	0
66	Asymmetric Direct Aldol Reaction Assisted by Water and a Proline-Derived Tetrazole Catalyst ChemInform, 2004, 35, no.	0.0	0
67	Design of Acid—Base Catalysis for the Asymmetric Direct Aldol Reaction. ChemInform, 2004, 35, no.	0.0	0
68	Design of Acidâ^'Base Catalysis for the Asymmetric Direct Aldol Reaction. Accounts of Chemical Research, 2004, 37, 570-579.	15.6	378
69	Diversity-Based Strategy for Discovery of Environmentally Benign Organocatalyst: Diamine—Protonic Acid Catalysts for Asymmetric Direct Aldol Reaction ChemInform, 2003, 34, no.	0.0	0
70	Molecular Recognition of α,β-Unsaturated Carbonyl Compounds Using Aluminum Tris(2,6-diphenylphenoxide) (ATPH):  Structural and Conformational Analysis of ATPH Complexes and Application to the Selective Vinylogous Aldol Reaction. Journal of the American Chemical Society, 2003, 125, 6200-6210.	13.7	43
71	A New Method for the Preparation of Aluminum and Titanium Tris(2,6-diphenylphenoxide) Reagents and Their Application in Organic Synthesis. Chemistry Letters, 2003, 32, 1006-1007.	1.3	4
72	Asymmetric Carbonâ^'Carbon Coupling of Phenols or Anilines with Aryllead Triacetates. Journal of the American Chemical Society, 2002, 124, 5365-5373.	13.7	41

#	Article	IF	CITATIONS
73	Diversity-based strategy for discovery of environmentally benign organocatalyst: diamine–protonic acid catalysts for asymmetric direct aldol reaction. Tetrahedron, 2002, 58, 8167-8177.	1.9	198
74	Asymmetric Mannich-type reactions with a chiral acetate: effect of Lewis acid on activation of aldimine. Tetrahedron, 2001, 57, 875-887.	1.9	21
75	Novel Three-Component Coupling Using Aluminum Tris(2,6-diphenylphenoxide) (ATPH): The Same Synthetic Strategy Leads to trans- and cis-Jasmonates. Angewandte Chemie - International Edition, 2001, 40, 3613.	13.8	33
76	Diamine-Protonic Acid Catalysts for Catalytic Asymmetric Aldol Reaction. Synlett, 2001, 2001, 1245-1248.	1.8	114
77	Direct Coupling of Anilines with Aryllead Triacetates. Synlett, 2000, 2000, 1676-1678.	1.8	3
78	Aluminum Tris(2,6-diphenylphenoxide)-ArCOCl Complex for Nucleophilic Dearomatic Functionalization. Journal of the American Chemical Society, 2000, 122, 10216-10217.	13.7	23
79	Asymmetric Mannich-Type Reactions of Aldimines with a Chiral Acetate. Organic Letters, 2000, 2, 1891-1894.	4.6	43
80	Molecular Recognition of Carbonyl Compounds Using Aluminum Tris(2,6-diphenylphenoxide) (ATPH): New Regio- and Stereoselective Alkylation of α,β-Unsaturated Carbonyl Compounds. Journal of the American Chemical Society, 2000, 122, 7847-7848.	13.7	33
81	Conjugate Addition of Lithium Enolates to Aromatic Carbonyl Compounds Complexed with Aluminum Tris(2,6-diphenylphenoxide) (ATPH). Synlett, 1999, 1999, 81-83.	1.8	16
82	Aluminum Trisphenoxide Polymer as a Lewis Acidic, Solid Catalyst. Synlett, 1999, 1999, 57-58.	1.8	9
83	Novel Three Component Coupling of Ketone, Cyclic Ether and Epoxide using Aluminum Tris(2,6-diphenylphenoxide) (ATPH). Synlett, 1999, 1999, 581-583.	1.8	9
84	Designer Lewis acid catalysts for selective organic synthesis. Pure and Applied Chemistry, 1999, 71, 239-245.	1.9	36
85	Directed Aldol Condensation. Chemistry - A European Journal, 1999, 5, 1959-1962.	3.3	49
86	Mixed Crossed Aldol Condensation between Conjugated Esters and Aldehydes Using Aluminum Tris(2,6-diphenylphenoxide). Angewandte Chemie - International Edition, 1999, 38, 1769-1771.	13.8	50
87	Asymmetric Coupling of Phenols with Arylleads. Journal of the American Chemical Society, 1999, 121, 8943-8944.	13.7	69
88	Mixed Crossed Aldol Condensation between Conjugated Esters and Aldehydes Using Aluminum Tris(2,6-diphenylphenoxide). , 1999, 38, 1769.		2
89	Designer Lewis Acids for Selective Organic Synthesis. , 1999, , 63-70.		0
90	Diastereoselective Aldol Reaction with an Acetate Enolate: 2,6-Bis(2-isopropylphenyl)-3,5-dimethylphenol as an Extremely Effective Chiral Auxiliary. Angewandte Chemie - International Edition, 1998, 37, 3378-3381.	13.8	45

#	Article	IF	CITATIONS
91	Conceptually New Directed Aldol Condensation Using Aluminum Tris(2,6-diphenylphenoxide). Journal of the American Chemical Society, 1998, 120, 813-814.	13.7	98
92	A New Annulation Based on a One-Pot Double Michael Addition Using Aluminum Tris(2,6-diphenylphenoxide) (ATPH). Synlett, 1997, 1997, 359-360.	1.8	2
93	Regioselective Robinson Annulation Realized by the Combined Use of Lithium Enolates and Aluminum Tris(2,6-diphenylphenoxide) (ATPH). Bulletin of the Chemical Society of Japan, 1997, 70, 1671-1681.	3.2	16
94	A new synthetic route to allylsilanes: the reaction of silyllithium reagents with aromatic carbonyl compounds and aluminium tris(2,6-diphenylphenoxide) (ATPH). Chemical Communications, 1997, , 1299-1300.	4.1	26
95	Designer Lewis acid catalysts—bulky aluminium reagents for selective organic synthesis. Chemical Communications, 1997, , 1585-1592.	4.1	104
96	2,6-Bis(2-alkylphenyl)-3,5-dimethylphenol as a New Chiral Phenol with C2-Symmetry. Application to the Asymmetric Alkylation of Aldehydes. Journal of Organic Chemistry, 1997, 62, 5651-5656.	3.2	29
97	Highly Regioselective Alkylation at the More-Hindered α-Site of Unsymmetrical Ketones by the Combined Use of Aluminum Tris(2,6-diphenylphenoxide) and Lithium Diisopropylamide. Journal of the American Chemical Society, 1997, 119, 611-612.	13.7	42
98	Efficient Conjugate Reduction of α,β-Unsaturated Carbonyl Compounds by Complexation with Aluminum Tris(2,6-diphenylphenoxide). Journal of Organic Chemistry, 1996, 61, 2928-2929.	3.2	51
99	Molecular Design of a Chiral Lewis Acid for the Asymmetric Claisen Rearrangement. Journal of the American Chemical Society, 1995, 117, 1165-1166.	13.7	101
100	Aluminum Tris(2,6-diphenylphenoxide) (ATPH) as an Extremely Selective Activator of Less Hindered Aldehyde Carbonyls. Synlett, 1994, 1994, 439-440.	1.8	26
101	Asymmetric Diels-Alder Reaction of Unsymmetrical Maleates. A Chemical Access to Chiral, Unsymmetrical cis-Cyclohexene-1,2-dicarboxylates. Journal of the American Chemical Society, 1994, 116, 6153-6158.	13.7	50
102	Virtually Complete Blocking of .alpha.,.betaUnsaturated Aldehyde Carbonyls by Complexation with Aluminum Tris(2,6-diphenylphenoxide). Journal of the American Chemical Society, 1994, 116, 4131-4132.	13.7	99
103	Chemoselective functionalization of more hindered aldehyde carbonyls with the methylaluminum bis(2,6-diphenylphenoxide)/alkyllithium system. Journal of the American Chemical Society, 1993, 115, 1183-1184.	13.7	50
104	Discrimination of two different ester carbonyls with methylaluminum bis(2,6-di-tert-butyl-4-methylphenoxide). Application to the regiocontrolled and stereocontrolled Diels-Alder reaction of unsymmetrical fumarates. Journal of the American Chemical Society, 1992, 114, 1089-1090.	13.7	51
105	Selective Reduction of Methylenecycloalkane Oxides with 4-Substituted Diisobutylaluminum 2,6-Di-tert-butylphenoxides. Synlett, 1991, 1991, 255-256.	1.8	10