
Qiuwen Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7539189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Introducing matrix sparsity with kernel truncation into dose calculations for fluence optimization. Biomedical Physics and Engineering Express, 2022, 8, 017001.	1.2	1
2	Applying pytorch toolkit to plan optimization for circular cone based robotic radiotherapy. Radiation Oncology, 2022, 17, 82.	2.7	1
3	Investigation of effect of filter on the standâ€up technique for total skin irradiation by Monte Carlo simulation. Journal of Applied Clinical Medical Physics, 2021, 22, 137-145.	1.9	0
4	Assessing the robustness of artificial intelligence powered planning tools in radiotherapy clinical settings—a phantom simulation approach. Quantitative Imaging in Medicine and Surgery, 2021, 11, 0-0.	2.0	1
5	Artificial intelligence applications in intensity modulated radiation treatment planning: an overview. Quantitative Imaging in Medicine and Surgery, 2021, 11, 4859-4880.	2.0	9
6	An Interpretable Planning Bot for Pancreas Stereotactic Body Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2021, 109, 1076-1085.	0.8	21
7	An artificial intelligenceâ€driven agent for realâ€time headâ€andâ€neck IMRT plan generation using conditional generative adversarial network (cGAN). Medical Physics, 2021, 48, 2714-2723.	3.0	19
8	Deep Learning–Based Fluence Map Prediction for Pancreas Stereotactic Body Radiation Therapy With Simultaneous Integrated Boost. Advances in Radiation Oncology, 2021, 6, 100672.	1.2	16
9	Recumbent Total Skin Electron Beam Therapy. Advances in Radiation Oncology, 2021, 6, 100698.	1.2	2
10	Technical note: A fast and accurate analytical dose calculation algorithm for ¹²⁵ 1 seedâ€loaded stent applications. Medical Physics, 2021, 48, 7493-7503.	3.0	1
11	Insights of an AI agent via analysis of prediction errors: a case study of fluence map prediction for radiation therapy planning. Physics in Medicine and Biology, 2021, 66, 23NT01.	3.0	1
12	Transfer learning for fluence map prediction in adrenal stereotactic body radiation therapy. Physics in Medicine and Biology, 2021, 66, .	3.0	5
13	Technical Note: A dose calculation framework for dynamic electron arc radiotherapy (DEAR) using VirtuaLinac Monte Carlo simulation tool. Medical Physics, 2020, 47, 164-170.	3.0	1
14	Fluence Map Prediction Using Deep Learning Models – Direct Plan Generation for Pancreas Stereotactic Body Radiation Therapy. Frontiers in Artificial Intelligence, 2020, 3, 68.	3.4	29
15	Knowledge Models as Teaching Aid for Training Intensity Modulated Radiation Therapy Planning: A Lung Cancer Case Study. Frontiers in Artificial Intelligence, 2020, 3, 66.	3.4	3
16	Validation of the dosimetry of total skin irradiation techniques by Monte Carlo simulation. Journal of Applied Clinical Medical Physics, 2020, 21, 107-119.	1.9	8
17	A patient-independent CT intensity matching method using conditional generative adversarial networks (cGAN) for single x-ray projection-based tumor localization. Physics in Medicine and Biology, 2020, 65, 145009.	3.0	6
18	Knowledge-Based Tradeoff Hyperplanes for Head and Neck Treatment Planning. International Journal of Radiation Oncology Biology Physics, 2020, 106, 1095-1103.	0.8	11

QIUWEN WU

#	Article	IF	CITATIONS
19	Real-time tumor localization with single x-ray projection at arbitrary gantry angles using a convolutional neural network (CNN). Physics in Medicine and Biology, 2020, 65, 065012.	3.0	16
20	Two Photon Dose Engines for Accurate and Fast Volumetric Modulated Arc Therapy. , 2019, , .		0
21	Nonuniform Planning Target Volume Margins for Prostate Bed on the Basis of Surgical Clips on Daily Cone Beam Computed Tomography. Advances in Radiation Oncology, 2019, 4, 186-190.	1.2	1
22	Convolutional Neural Network (CNN) Based Three Dimensional Tumor Localization Using Single X-Ray Projection. IEEE Access, 2019, 7, 37026-37038.	4.2	17
23	A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy. Physics in Medicine and Biology, 2018, 63, 015034.	3.0	2
24	In modern linacs monitor units should be defined in water at 10Âcm depth rather than at <i>d</i> _{max} . Medical Physics, 2018, 45, 4789-4792.	3.0	1
25	Observation of different tumor motion magnitude within liver and estimate of internal motion margins in postoperative patients with hepatocellular carcinoma. Cancer Management and Research, 2017, Volume 9, 839-848.	1.9	8
26	A pencil beam dose calculation model for CyberKnife system. Medical Physics, 2016, 43, 5380-5391.	3.0	5
27	Comparisons of volumetric modulated arc therapy (VMAT) quality assurance (QA) systems: sensitivity analysis to machine errors. Radiation Oncology, 2016, 11, 146.	2.7	45
28	A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs. Medical Physics, 2015, 42, 2389-2403.	3.0	24
29	Online adaptive planning for prostate cancer radiotherapy is necessary and ready now. Medical Physics, 2014, 41, 080601.	3.0	8
30	Dynamic electron arc radiotherapy (DEAR): a feasibility study. Physics in Medicine and Biology, 2014, 59, 327-345.	3.0	18
31	A novel technique for VMAT QA with EPID in cine mode on a Varian TrueBeam linac. Physics in Medicine and Biology, 2013, 58, 6683-6700.	3.0	37
32	Commissioning and dosimetric characteristics of TrueBeam system: Composite data of three TrueBeam machines. Medical Physics, 2012, 39, 6981-7018.	3.0	102
33	Evaluation of the Accuracy of a 3D Surface Imaging System for Patient Setup in Head and Neck Cancer Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2012, 84, 547-552.	0.8	34
34	Independent verification of gantry angle for pre-treatment VMAT QA using EPID. Physics in Medicine and Biology, 2012, 57, 6587-6600.	3.0	19
35	A "rolling average―multiple adaptive planning method to compensate for target volume changes in imageâ€guided radiotherapy of prostate cancer. Journal of Applied Clinical Medical Physics, 2012, 13, 124-137.	1.9	19
36	Adaptive Radiation Therapy. Cancer Journal (Sudbury, Mass), 2011, 17, 182-189.	2.0	70

QIUWEN WU

#	Article	IF	CITATIONS
37	Dosimetric Effect of Intrafraction Motion and Residual Setup Error for Hypofractionated Prostate Intensity-Modulated Radiotherapy With Online Cone Beam Computed Tomography Image Guidance. International Journal of Radiation Oncology Biology Physics, 2011, 80, 453-461.	0.8	43
38	Evaluations of an adaptive planning technique incorporating dose feedback in imageâ€guided radiotherapy of prostate cancer. Medical Physics, 2011, 38, 6362-6370.	3.0	18
39	Dosimetric and geometric evaluation of a hybrid strategy of offline adaptive planning and online image guidance for prostate cancer radiotherapy. Physics in Medicine and Biology, 2011, 56, 5045-5062.	3.0	16
40	Dosimetric assessment of rigid setup error by CBCT for HN″MRT. Journal of Applied Clinical Medical Physics, 2010, 11, 38-53.	1.9	5
41	Prostate Intrafraction Motion Assessed by Simultaneous Kilovoltage Fluoroscopy at Megavoltage Delivery I: Clinical Observations and Pattern Analysis. International Journal of Radiation Oncology Biology Physics, 2010, 78, 1563-1570.	0.8	40
42	Prostate Intrafraction Motion Assessed by Simultaneous kV Fluoroscopy at MV Delivery II: Adaptive Strategies. International Journal of Radiation Oncology Biology Physics, 2010, 78, 1323-1330.	0.8	27
43	A hybrid strategy of offline adaptive planning and online image guidance for prostate cancer radiotherapy. Physics in Medicine and Biology, 2010, 55, 2221-2234.	3.0	28
44	Parameter optimization in HNâ€IMRT for Elekta linacs. Journal of Applied Clinical Medical Physics, 2009, 10, 43-61.	1.9	12
45	The Role of Seminal Vesicle Motion in Target Margin Assessment for Online Image-Guided Radiotherapy for Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2009, 73, 935-943.	0.8	59
46	Inferences About Prostate Intrafraction Motion From Pre- and Posttreatment Volumetric Imaging. International Journal of Radiation Oncology Biology Physics, 2009, 75, 260-267.	0.8	50
47	Adaptive Replanning Strategies Accounting for Shrinkage in Head and Neck IMRT. International Journal of Radiation Oncology Biology Physics, 2009, 75, 924-932.	0.8	215
48	Prostate intrafraction motion evaluation using kV fluoroscopy during treatment delivery: A feasibility and accuracy study. Medical Physics, 2008, 35, 1793-1806.	3.0	42
49	Effect of the first day correction on systematic setup error reduction. Medical Physics, 2007, 34, 1789-1796.	3.0	9
50	Geometric and dosimetric evaluations of an online image-guidance strategy for 3D-CRT of prostate cancer. International Journal of Radiation Oncology Biology Physics, 2006, 64, 1596-1609.	0.8	74
51	Application of dose compensation in image-guided radiotherapy of prostate cancer. Physics in Medicine and Biology, 2006, 51, 1405-1419.	3.0	69
52	Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans. International Journal of Radiation Oncology Biology Physics, 2005, 63, 422-433.	0.8	80
53	Dose sculpting with generalized equivalent uniform dose. Medical Physics, 2005, 32, 1387-1396.	3.0	40
54	A dose calculation method including scatter for IMRT optimization. Physics in Medicine and Biology, 2004, 49, 4611-4621.	3.0	1

QIUWEN WU

#	Article	IF	CITATIONS
55	Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: dosimetric results. International Journal of Radiation Oncology Biology Physics, 2003, 56, 573-585.	0.8	263
56	Intensity-modulated radiotherapy optimization with gEUD-guided doseÂvolume objectives. Physics in Medicine and Biology, 2003, 48, 279-291.	3.0	59
57	A fast dose calculation method based on table lookup for IMRT optimization. Physics in Medicine and Biology, 2003, 48, N159-N166.	3.0	14
58	Multiple local minima in IMRT optimization based on dose-volume criteria. Medical Physics, 2002, 29, 1514-1527.	3.0	71
59	Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. International Journal of Radiation Oncology Biology Physics, 2002, 52, 224-235.	0.8	342
60	The impact of fluctuations in intensity patterns on the number of monitor units and the quality and accuracy of intensity modulated radiotherapy. Medical Physics, 2000, 27, 1226-1237.	3.0	132
61	Algorithms and functionality of an intensity modulated radiotherapy optimization system. Medical Physics, 2000, 27, 701-711.	3.0	221
62	IMRT optimization based on the generalized equivalent uniform dose (EUD). , 0, , .		6

5