
Thomas Noll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7539007/publications.pdf Version: 2024-02-01

ΤΗΟΜΛς ΝΟΙΙ

#	Article	IF	CITATIONS
1	Hyperosmolality in CHO cell culture: effects on the proteome. Applied Microbiology and Biotechnology, 2022, 106, 2569-2586.	1.7	4
2	Single-Cell Analysis of CHO Cells Reveals Clonal Heterogeneity in Hyperosmolality-Induced Stress Response. Cells, 2022, 11, 1763.	1.8	3
3	A positive pressure workstation for semiâ€automated peptide purification of complex proteomic samples. Rapid Communications in Mass Spectrometry, 2021, 35, e8873.	0.7	3
4	Development and application of a cultivation platform for mammalian suspension cell lines with singleâ€cell resolution. Biotechnology and Bioengineering, 2021, 118, 992-1005.	1.7	18
5	Nanopore Sequencing Reveals Global Transcriptome Signatures of Mitochondrial and Ribosomal Gene Expressions in Various Human Cancer Stem-like Cell Populations. Cancers, 2021, 13, 1136.	1.7	14
6	Hyperosmolality in CHO culture: Effects on cellular behavior and morphology. Biotechnology and Bioengineering, 2021, 118, 2348-2359.	1.7	11
7	Interaction of leachable model compounds and their impact on <scp>Chinese hamster ovary</scp> cell cultivation. Biotechnology Progress, 2021, 37, e3150.	1.3	3
8	Exploring the molecular content of CHO exosomes during bioprocessing. Applied Microbiology and Biotechnology, 2021, 105, 3673-3689.	1.7	21
9	Growth and eGFP Production of CHO-K1 Suspension Cells Cultivated From Single Cell to Laboratory Scale. Frontiers in Bioengineering and Biotechnology, 2021, 9, 716343.	2.0	5
10	Perfusion process combining low temperature and valeric acid for enhanced recombinant factor VIII production. Biotechnology Progress, 2020, 36, e2915.	1.3	8
11	Cancer-associated hypersialylated MUC1 drives the differentiation of human monocytes into macrophages with a pathogenic phenotype. Communications Biology, 2020, 3, 644.	2.0	36
12	Application of an Inclined Settler for Cell Culture-Based Influenza A Virus Production in Perfusion Mode. Frontiers in Bioengineering and Biotechnology, 2020, 8, 672.	2.0	23
13	Identification and evaluation of cell- growth-inhibiting bDtBPP-analogue degradation products from phosphite antioxidants used in polyolefin bioprocessing materials. Analytical and Bioanalytical Chemistry, 2020, 412, 4505-4518.	1.9	12
14	Clonal variations in CHO IGF signaling investigated by SILAC-based phosphoproteomics and LFQ-MS. Applied Microbiology and Biotechnology, 2019, 103, 8127-8143.	1.7	13
15	Assessment of mixture toxicity of (tri)azoles and their hepatotoxic effects in vitro by means of omics technologies. Archives of Toxicology, 2019, 93, 2321-2333.	1.9	28
16	Heterogeneity Studies of Mammalian Cells for Bioproduction: From Tools to Application. Trends in Biotechnology, 2019, 37, 645-660.	4.9	24
17	Effect of manufacturing temperature and storage duration on stability of chemically defined media measured with LCâ€MS/MS. Journal of Chemical Technology and Biotechnology, 2019, 94, 1144-1155.	1.6	9
18	Engineered and Natural Promoters and Chromatinâ€Modifying Elements for Recombinant Protein Expression in CHO Cells. Biotechnology Journal, 2018, 13, e1700232.	1.8	52

#	Article	IF	CITATIONS
19	A glyco-immune checkpoint: Modulation of the immune micro-environment and induction of stem cell-like properties in breast cancer cells Journal of Clinical Oncology, 2018, 36, e15104-e15104.	0.8	0
20	Integrative analysis of DNA methylation and gene expression in butyrate-treated CHO cells. Journal of Biotechnology, 2017, 257, 150-161.	1.9	22
21	Label-free protein quantification of sodium butyrate treated CHO cells by ESI-UHR-TOF-MS. Journal of Biotechnology, 2017, 257, 87-98.	1.9	8
22	DNA methylation in CHO cells. Journal of Biotechnology, 2017, 258, 206-210.	1.9	8
23	The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nature Immunology, 2016, 17, 1273-1281.	7.0	277
24	Valeric acid supplementation combined to mild hypothermia increases productivity in CHO cell cultivations. Biochemical Engineering Journal, 2016, 114, 101-109.	1.8	26
25	2D-DIGE screening of high-productive CHO cells under glucose limitation—Basic changes in the proteome equipment and hints for epigenetic effects. Journal of Biotechnology, 2015, 201, 86-97.	1.9	12
26	The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells. Journal of Biotechnology, 2015, 199, 38-46.	1.9	32
27	Construction of a Public CHO Cell Line Transcript Database Using Versatile Bioinformatics Analysis Pipelines. PLoS ONE, 2014, 9, e85568.	1.1	57
28	5.2 Functional -Omics for Cell Lines and Processes: The -Omics Technologies on the Example of CHO Cells. , 2014, , 326-367.		0
29	Discovery of transcription start sites in the Chinese hamster genome by next-generation RNA sequencing. Journal of Biotechnology, 2014, 190, 64-75.	1.9	9
30	Transcriptome analyses of CHO cells with the next-generation microarray CHO41K: Development and validation by analysing the influence of the growth stimulating substance IGF-1 substitute LongR3. Journal of Biotechnology, 2014, 178, 23-31.	1.9	14
31	Establishment of a CpG island microarray for analyses of genome-wide DNA methylation in Chinese hamster ovary cells. Applied Microbiology and Biotechnology, 2014, 98, 579-589.	1.7	25
32	The Genomics Revolution and its Impact on Future Biotechnology. Journal of Biotechnology, 2014, 190, 1.	1.9	1
33	The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells. Journal of Biotechnology, 2014, 178, 43-53.	1.9	8
34	Batchâ€ŧoâ€batch variability of two human designer cell lines – <scp>AGE</scp> 1. <scp>HN</scp> and <scp>AGE</scp> 1. <scp>HN</scp> . <scp>AAT</scp> – carried out by different laboratories under defined culture conditions using a mathematical model. Engineering in Life Sciences, 2013, 13, 580-592.	2.0	3
35	Chinese hamster genome sequenced from sorted chromosomes. Nature Biotechnology, 2013, 31, 694-695.	9.4	160
36	First CpG island microarray for genome-wide analyses of DNA methylation in Chinese hamster ovary cells: new insights into the epigenetic answer to butyrate treatment. BMC Proceedings, 2013, 7, .	1.8	1

#	Article	IF	CITATIONS
37	Enhancing cell growth and antibody production in CHO cells by siRNA knockdown of novel target genes. BMC Proceedings, 2013, 7, .	1.8	2
38	Effects of perfusion processes under limiting conditions on different Chinese Hamster Ovary cells. BMC Proceedings, 2013, 7, .	1.8	0
39	Hsc70 Is a Novel Interactor of NF-kappaB p65 in Living Hippocampal Neurons. PLoS ONE, 2013, 8, e65280.	1.1	18
40	Computational identification of microRNA gene loci and precursor microRNA sequences in CHO cell lines. Journal of Biotechnology, 2012, 158, 151-155.	1.9	46
41	How can measurement, monitoring, modeling and control advance cell culture in industrial biotechnology?. Biotechnology Journal, 2012, 7, 1522-1529.	1.8	49
42	Evaluation of criteria for bioreactor comparison and operation standardization for mammalian cell culture. Engineering in Life Sciences, 2012, 12, 518-528.	2.0	32
43	Effects of high passage cultivation on CHO cells: a global analysis. Applied Microbiology and Biotechnology, 2012, 94, 659-671.	1.7	52
44	Utilization and evaluation of CHOâ€specific sequence databases for mass spectrometry based proteomics. Biotechnology and Bioengineering, 2012, 109, 1386-1394.	1.7	46
45	Evaluation of sulfatase-directed quinone methide traps for proteomics. Bioorganic and Medicinal Chemistry, 2012, 20, 622-627.	1.4	9
46	Unraveling the Chinese hamster ovary cell line transcriptome by next-generation sequencing. Journal of Biotechnology, 2011, 156, 227-235.	1.9	96
47	Fast filtration for metabolome sampling of suspended animal cells. Biotechnology Letters, 2011, 33, 495-502.	1.1	29
48	Quantitative characterization of metabolism and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved metabolic flux analysis. Bioprocess and Biosystems Engineering, 2011, 34, 533-545.	1.7	89
49	Growth characterization of CHO DP-12 cell lines with different high passage histories. BMC Proceedings, 2011, 5, P29.	1.8	6
50	Utilization of multifrequency permittivity measurements in addition to biomass monitoring. BMC Proceedings, 2011, 5, P30.	1.8	1
51	Criteria for bioreactor comparison and operation standardisation during process development for mammalian cell culture. BMC Proceedings, 2011, 5, P47.	1.8	7
52	Next-generation sequencing of the CHO cell transcriptome. BMC Proceedings, 2011, 5, P6.	1.8	11
53	Characterization of the human AGE1.HN cell line: a systems biology approach. BMC Proceedings, 2011, 5, P78.	1.8	2
54	Analysis of the mitochondrial subproteome of the human cell line AGE1.HN – a contribution to a systems biology approach. BMC Proceedings, 2011, 5, P86.	1.8	0

#	Article	IF	CITATIONS
55	Characterisation of cultivation of the human cell line AGE1.HN.AAT. BMC Proceedings, 2011, 5, P87.	1.8	1
56	Proteomic and metabolomic characterization of CHO DP-12 cell lines with different high passage histories. BMC Proceedings, 2011, 5, P92.	1.8	3
57	A method for metabolomic sampling of suspended animal cells using fast filtration. BMC Proceedings, 2011, 5, P93.	1.8	6
58	Bioreactor cultivation of CHO DP-12 cells under sodium butyrate treatment $\hat{a} \in $ comparative transcriptome analysis with CHO cDNA microarrays. BMC Proceedings, 2011, 5, P98.	1.8	9
59	Methods in mammalian cell line engineering: from random mutagenesis to sequence-specific approaches. Applied Microbiology and Biotechnology, 2010, 88, 425-436.	1.7	59
60	CellViCAM—Cell viability classification for animal cell cultures using dark field micrographs. Journal of Biotechnology, 2010, 149, 310-316.	1.9	7
61	Proteomic Characterisation of a Glucose-Limited CHO Perfusion Process–Analysis of Metabolic Changes and Increase in Productivity. , 2010, , 265-269.		1
62	O-Glycans on Recombinant MUC1 Produced in CHO K1 Cells Become Less Sialylated with Increased Protein Productivity, as Determined by LC-ESI MS. , 2010, , 285-288.		0
63	Localization of O-glycans in MUC1 glycoproteins using electron-capture dissociation fragmentation mass spectrometry. Glycobiology, 2009, 19, 375-381.	1.3	35
64	Influence of culture conditions on recombinant Drosophila melanogaster S2 cells producing rabies virus glycoprotein cultivated in serum-free medium. Biologicals, 2009, 37, 108-118.	0.5	16
65	Adult Palatum as a Novel Source of Neural Crest-Related Stem Cells. Stem Cells, 2009, 27, 1899-1910.	1.4	141
66	Application of immobilized bovine enterokinase in repetitive fusion protein cleavage for the production of mucin 1. Biotechnology Journal, 2009, 4, 1610-1618.	1.8	7
67	Immobilisation of bovine enterokinase and application of the immobilised enzyme in fusion protein cleavage. Bioprocess and Biosystems Engineering, 2008, 31, 173-182.	1.7	12
68	Immunisation with â€~naÃ-ve' syngeneic dendritic cells protects mice from tumour challenge. British Journal of Cancer, 2008, 98, 784-791.	2.9	3
69	New Electrofusion Devices for the Improved Generation of Dendritic Cell-tumour Cell Hybrids. , 2007, , 207-216.		2
70	Systematic Screening of All Signal Peptides from Bacillus subtilis: A Powerful Strategy in Optimizing Heterologous Protein Secretion in Gram-positive Bacteria. Journal of Molecular Biology, 2006, 362, 393-402.	2.0	228
71	The ST6GalNAc-I Sialyltransferase Localizes throughout the Golgi and Is Responsible for the Synthesis of the Tumor-associated Sialyl-Tn O-Glycan in Human Breast Cancer. Journal of Biological Chemistry, 2006, 281, 3586-3594.	1.6	210
72	Recombinant Tumor-Associated MUC1 Glycoprotein Impairs the Differentiation and Function of Dendritic Cells. Journal of Immunology, 2005, 174, 7764-7772.	0.4	82

#	Article	IF	CITATIONS
73	Apoptosis of monocytes and the influence on yield of monocyte-derived dendritic cells. Journal of Immunological Methods, 2004, 294, 67-80.	0.6	19
74	Breast carcinoma cell lysate-pulsed dendritic cells cross-prime MUC1-specific CD8+ T cells identified by peptide-MHC-class-I tetramers. Cellular Immunology, 2004, 231, 112-125.	1.4	22
75	Bioprocess development for the production of a recombinant MUC1 fusion protein expressed by CHO-K1 cells in protein-free medium. Journal of Biotechnology, 2004, 110, 51-62.	1.9	60
76	Microfluidics and Micropatterned Immobilization as a Tool for Improved Electrofusion of Dendritic Cells with Tumor Cells. Journal of Immunotherapy, 2004, 27, S30-S31.	1.2	0
77	Recombinant MUC1 mucin with a breast cancer-like O-glycosylation produced in large amounts in Chinese-hamster ovary cells. Biochemical Journal, 2003, 376, 677-686.	1.7	83
78	Title is missing!. Biotechnology Letters, 2002, 24, 861-866.	1.1	1
79	Bioprocess Development for the Cultivation of Human T-Lymphocytes. , 2001, , 503-509.		0
80	Dielectric spectroscopy in the cultivation of suspended and immobilized hybridoma cells. Journal of Biotechnology, 1998, 63, 187-198.	1.9	64