List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7538954/publications.pdf Version: 2024-02-01



Ρηπιρ Γλτον

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Redox-dependent internalization of the purinergic P2Y <sub>6</sub> receptor limits colitis progression. Science Signaling, 2022, 15, eabj0644.                                                                               | 1.6  | 12        |
| 2  | Nitroxyl Donor CXL-1020 Lowers Blood Pressure by Targeting C195 in Cyclic<br>Guanosine-3',5'-Monophosphate-Dependent Protein Kinase I. Hypertension, 2022, 79, 946-956.                                                      | 1.3  | 2         |
| 3  | NOS2 and <i>S</i> -nitrosothiol signaling induces DNA hypomethylation and LINE-1 retrotransposon expression. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200022119.        | 3.3  | 12        |
| 4  | Redox Regulation of Soluble Epoxide Hydrolase—Implications for Cardiovascular Health and Disease.<br>Cells, 2022, 11, 1932.                                                                                                  | 1.8  | 4         |
| 5  | Oxidation of Protein Kinase A Regulatory Subunit PKARIα Protects Against Myocardial<br>Ischemia-Reperfusion Injury by Inhibiting Lysosomal-Triggered Calcium Release. Circulation, 2021, 143,<br>449-465.                    | 1.6  | 29        |
| 6  | Heart failure—emerging roles for the mitochondrial pyruvate carrier. Cell Death and Differentiation, 2021, 28, 1149-1158.                                                                                                    | 5.0  | 22        |
| 7  | Enhanced Heart Failure in Redoxâ€Dead Cys17Ser PKARIα Knockâ€In Mice. Journal of the American Heart<br>Association, 2021, 10, e021985.                                                                                       | 1.6  | 0         |
| 8  | Cysteine trisulfide oxidizes protein thiols and induces electrophilic stress in human cells. Redox<br>Biology, 2021, 47, 102155.                                                                                             | 3.9  | 14        |
| 9  | A thiol redox sensor in soluble epoxide hydrolase enables oxidative activation by intra-protein disulfide bond formation. Redox Biology, 2021, 46, 102107.                                                                   | 3.9  | 3         |
| 10 | Hydrogen peroxide signaling via its transformation to a stereospecific alkyl hydroperoxide that escapes reductive inactivation. Nature Communications, 2021, 12, 6626.                                                       | 5.8  | 6         |
| 11 | Long-lasting blood pressure lowering effects of nitrite are NO-independent and mediated by hydrogen peroxide, persulfides, and oxidation of protein kinase G11± redox signalling. Cardiovascular Research, 2020, 116, 51-62. | 1.8  | 31        |
| 12 | Complex interrelationships between nitro-alkene-dependent inhibition of soluble epoxide hydrolase, inflammation and tumor growth. Redox Biology, 2020, 29, 101405.                                                           | 3.9  | 11        |
| 13 | Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy. Nature<br>Metabolism, 2020, 2, 1223-1231.                                                                                                | 5.1  | 68        |
| 14 | 15-deoxy-î"12,14-Prostaglandin J2 inhibits human soluble epoxide hydrolase by a dual orthosteric and allosteric mechanism. Communications Biology, 2019, 2, 188.                                                             | 2.0  | 16        |
| 15 | Oxidation of PKGIα mediates an endogenous adaptation to pulmonary hypertension. Proceedings of the<br>National Academy of Sciences of the United States of America, 2019, 116, 13016-13025.                                  | 3.3  | 12        |
| 16 | Blood Pressure–Lowering by the Antioxidant Resveratrol Is Counterintuitively Mediated by Oxidation of cGMP-Dependent Protein Kinase. Circulation, 2019, 140, 126-137.                                                        | 1.6  | 57        |
| 17 | Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction. Circulation Research, 2019, 124, 1727-1746.                                                 | 2.0  | 67        |
| 18 | Singlet molecular oxygen regulates vascular tone and blood pressure in inflammation. Nature, 2019, 566, 548-552.                                                                                                             | 13.7 | 84        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Response by Prysyazhna et al to Letter Regarding Article, "Blood Pressure–Lowering by the<br>Antioxidant Resveratrol Is Counterintuitively Mediated by Oxidation of cGMP-Dependent Protein<br>Kinaseâ€ŧ Circulation, 2019, 140, e810-e811. | 1.6 | 1         |
| 20 | "A Step and a Ceiling― mechanical properties of Ca <sup>2+</sup> spark vasoregulation in resistance<br>arteries by pressure―nduced oxidative activation of PKG. Physiological Reports, 2019, 7, e14260.                                    | 0.7 | 0         |
| 21 | Expression, purification, and characterisation of human soluble Epoxide Hydrolase (hsEH) and of its functional C-terminal domain. Protein Expression and Purification, 2019, 153, 105-113.                                                 | 0.6 | 9         |
| 22 | Cysteine-Based Redox Sensing and Its Role in Signaling by Cyclic Nucleotide–Dependent Kinases in the<br>Cardiovascular System. Annual Review of Physiology, 2019, 81, 63-87.                                                               | 5.6 | 18        |
| 23 | PKG1α oxidation negatively regulates food seeking behaviour and reward. Redox Biology, 2019, 21, 101077.                                                                                                                                   | 3.9 | 7         |
| 24 | Evidence against Stable Protein S-Nitrosylation as a Widespread Mechanism of Post-translational<br>Regulation. Molecular Cell, 2018, 69, 438-450.e5.                                                                                       | 4.5 | 84        |
| 25 | Oxidation of cardiac myofilament proteins: Priming for dysfunction?. Molecular Aspects of Medicine, 2018, 63, 47-58.                                                                                                                       | 2.7 | 17        |
| 26 | The TAB1-p38α complex aggravates myocardial injury and can be targeted by small molecules. JCI Insight,<br>2018, 3, .                                                                                                                      | 2.3 | 15        |
| 27 | How widespread is stable protein S-nitrosylation as an end-effector of protein regulation?. Free<br>Radical Biology and Medicine, 2017, 109, 156-166.                                                                                      | 1.3 | 49        |
| 28 | Oxidant sensor in the cGMP-binding pocket of PKGIα regulates nitroxyl-mediated kinase activity.<br>Scientific Reports, 2017, 7, 9938.                                                                                                      | 1.6 | 22        |
| 29 | Proof of Principle for a Novel Class of Antihypertensives That Target the Oxidative Activation of PKG lα<br>(Protein Kinase G lα). Hypertension, 2017, 70, 577-586.                                                                        | 1.3 | 21        |
| 30 | Examining a role for PKG lÎ $\pm$ oxidation in the pathogenesis of cardiovascular dysfunction during diet-induced obesity. Free Radical Biology and Medicine, 2017, 110, 390-398.                                                          | 1.3 | 8         |
| 31 | Redox-dependent dimerization of p38α mitogen-activated protein kinase with mitogen-activated protein kinase kinase 3. Journal of Biological Chemistry, 2017, 292, 16161-16173.                                                             | 1.6 | 24        |
| 32 | Phosphodiesterase 5 Inhibition Limits Doxorubicin-induced Heart Failure by Attenuating Protein Kinase<br>G Iα Oxidation. Journal of Biological Chemistry, 2016, 291, 17427-17436.                                                          | 1.6 | 40        |
| 33 | Pressure-induced oxidative activation of PKG enables vasoregulation by Ca <sup>2+</sup> sparks and BK channels. Science Signaling, 2016, 9, ra100.                                                                                         | 1.6 | 35        |
| 34 | Disulfide-activated protein kinase G lα regulates cardiac diastolic relaxation and fine-tunes the<br>Frank–Starling response. Nature Communications, 2016, 7, 13187.                                                                       | 5.8 | 46        |
| 35 | Transcriptional Regulation of Cystathionine-Î <sup>3</sup> -Lyase in Endothelial Cells by NADPH Oxidase 4-Dependent<br>Signaling. Journal of Biological Chemistry, 2016, 291, 1774-1788.                                                   | 1.6 | 43        |
| 36 | Oxidant-induced Interprotein Disulfide Formation in Cardiac Protein DJ-1 Occurs via an Interaction with Peroxiredoxin 2. Journal of Biological Chemistry, 2016, 291, 10399-10410.                                                          | 1.6 | 36        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Persistent Activation of cGMP-Dependent Protein Kinase by a Nitrated Cyclic Nucleotide via Site<br>Specific Protein <i>S</i> -Guanylation. Biochemistry, 2016, 55, 751-761.                                                                                                                                                                                 | 1.2 | 25        |
| 38 | <i>S</i> â€glutathiolation impairs phosphoregulation and function of cardiac myosinâ€binding protein C<br>in human heart failure. FASEB Journal, 2016, 30, 1849-1864.                                                                                                                                                                                       | 0.2 | 38        |
| 39 | Analysis of Mitochondrial Proteins in the Surviving Myocardium after Ischemia Identifies<br>Mitochondrial Pyruvate Carrier Expression as Possible Mediator of Tissue Viability. Molecular and<br>Cellular Proteomics, 2016, 15, 246-255.                                                                                                                    | 2.5 | 23        |
| 40 | Redox regulation of cGMP-dependent protein kinase lÎ $\pm$ in the cardiovascular system. Frontiers in Pharmacology, 2015, 6, 139.                                                                                                                                                                                                                           | 1.6 | 21        |
| 41 | Prevention of PKG1α oxidation augments cardioprotection in the stressed heart. Journal of Clinical Investigation, 2015, 125, 2468-2472.                                                                                                                                                                                                                     | 3.9 | 64        |
| 42 | Polarized Cell Motility Induces Hydrogen Peroxide to Inhibit Cofilin via Cysteine Oxidation. Current<br>Biology, 2015, 25, 1520-1525.                                                                                                                                                                                                                       | 1.8 | 64        |
| 43 | Deficient angiogenesis in redox-dead Cys17Ser PKARIα knock-in mice. Nature Communications, 2015, 6,<br>7920.                                                                                                                                                                                                                                                | 5.8 | 41        |
| 44 | Intensity matters: Ryanodine receptor regulation during exercise. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15271-15272.                                                                                                                                                                                  | 3.3 | 2         |
| 45 | Protein Kinase G lÎ $\pm$ Oxidation Paradoxically Underlies Blood Pressure Lowering by the Reductant Hydrogen Sulfide. Hypertension, 2014, 64, 1344-1351.                                                                                                                                                                                                   | 1.3 | 89        |
| 46 | Oxidant-Induced Activation of cGMP-Dependent Protein Kinase lα Mediates Neuropathic Pain After<br>Peripheral Nerve Injury. Antioxidants and Redox Signaling, 2014, 21, 1504-1515.                                                                                                                                                                           | 2.5 | 18        |
| 47 | Preface for redox signalling in the cardiovascular system. Journal of Molecular and Cellular Cardiology, 2014, 73, 1.                                                                                                                                                                                                                                       | 0.9 | 2         |
| 48 | Protection from hypertension in mice by the Mediterranean diet is mediated by nitro fatty acid<br>inhibition of soluble epoxide hydrolase. Proceedings of the National Academy of Sciences of the<br>United States of America, 2014, 111, 8167-8172.                                                                                                        | 3.3 | 79        |
| 49 | Meeting highlights from the 2013 <scp>E</scp> uropean <scp>S</scp> ociety of <scp>C</scp> ardiology<br><scp>H</scp> eart <scp>F</scp> ailure <scp>A</scp> ssociation <scp>W</scp> inter <scp>M</scp> eeting<br>on <scp>T</scp> ranslational <scp>H</scp> eart <scp>F</scp> ailure <scp>R</scp> esearch. European<br>Journal of Heart Failure 2014, 16, 6-14 | 2.9 | 1         |
| 50 | Biochemical methods for monitoring protein thiol redox states in biological systems. Redox Biology, 2014, 2, 803-813.                                                                                                                                                                                                                                       | 3.9 | 95        |
| 51 | Gel-based methods in redox proteomics. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840,<br>830-837.                                                                                                                                                                                                                                            | 1.1 | 20        |
| 52 | Protein kinase G oxidation is a major cause of injury during sepsis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9909-9913.                                                                                                                                                                                 | 3.3 | 47        |
| 53 | The PEG-switch assay: A fast semi-quantitative method to determine protein reversible cysteine oxidation. Journal of Pharmacological and Toxicological Methods, 2013, 68, 297-301.                                                                                                                                                                          | 0.3 | 41        |
| 54 | Response to Detailed Aspects of Redox Signaling in Cardiac Physiology and Pathology. Circulation Research, 2013, 112, e2.                                                                                                                                                                                                                                   | 2.0 | 3         |

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Approaches for Monitoring PKG1α Oxidative Activation. Methods in Molecular Biology, 2013, 1020, 163-173.                                                                                                         | 0.4  | 3         |
| 56 | Detecting Disulfide-Bound Complexes and the Oxidative Regulation of Cyclic Nucleotide-Dependent<br>Protein Kinases by H2O2. Methods in Enzymology, 2013, 528, 111-128.                                           | 0.4  | 13        |
| 57 | Hydrogen Peroxide Sensing and Signaling by Protein Kinases in the Cardiovascular System.<br>Antioxidants and Redox Signaling, 2013, 18, 1042-1052.                                                               | 2.5  | 178       |
| 58 | cGMP-Dependent Activation of Protein Kinase G Precludes Disulfide Activation. Hypertension, 2012, 60, 1301-1308.                                                                                                 | 1.3  | 73        |
| 59 | Nitroglycerin Fails to Lower Blood Pressure in Redox-Dead Cys42Ser PKG1α Knock-In Mouse.<br>Circulation, 2012, 126, 287-295.                                                                                     | 1.6  | 44        |
| 60 | Pathological Cardiac Hypertrophy Alters Intracellular Targeting of Phosphodiesterase Type 5 From Nitric Oxide Synthase-3 to Natriuretic Peptide Signaling. Circulation, 2012, 126, 942-951.                      | 1.6  | 39        |
| 61 | Single atom substitution in mouse protein kinase G eliminates oxidant sensing to cause hypertension.<br>Nature Medicine, 2012, 18, 286-290.                                                                      | 15.2 | 155       |
| 62 | Redox Signaling in Cardiac Physiology and Pathology. Circulation Research, 2012, 111, 1091-1106.                                                                                                                 | 2.0  | 397       |
| 63 | Redox modification of cell signaling in the cardiovascular system. Journal of Molecular and Cellular<br>Cardiology, 2012, 52, 550-558.                                                                           | 0.9  | 89        |
| 64 | Glyceraldehyde 3-Phosphate Dehydrogenase is Unlikely to Mediate Hydrogen Peroxide Signaling:<br>Studies with a Novel Anti-Dimedone Sulfenic Acid Antibody. Antioxidants and Redox Signaling, 2011, 14,<br>49-60. | 2.5  | 74        |
| 65 | Nitrosative protein oxidation is modulated during early endotoxemia. Nitric Oxide - Biology and Chemistry, 2011, 25, 118-124.                                                                                    | 1.2  | 19        |
| 66 | Frontiers in nitric oxide and redox signaling. Nitric Oxide - Biology and Chemistry, 2011, 25, 57-58.                                                                                                            | 1.2  | 4         |
| 67 | Contemporary techniques for detecting and identifying proteins susceptible to reversible thiol oxidation. Biochemical Society Transactions, 2011, 39, 1260-1267.                                                 | 1.6  | 21        |
| 68 | Endothelial Nox4 NADPH Oxidase Enhances Vasodilatation and Reduces Blood Pressure In Vivo.<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1368-1376.                                           | 1.1  | 278       |
| 69 | Redox Regulation of Soluble Epoxide Hydrolase by 15-Deoxy-Δ-Prostaglandin J <sub>2</sub> Controls<br>Coronary Hypoxic Vasodilation. Circulation Research, 2011, 108, 324-334.                                    | 2.0  | 50        |
| 70 | Oxidant Sensing by Protein Kinases A and G Enables Integration of Cell Redox State with Phosphoregulation. Sensors, 2010, 10, 2731-2751.                                                                         | 2.1  | 15        |
| 71 | Phospholemman Ser69 phosphorylation contributes to sildenafil-induced cardioprotection against reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H827-H836.      | 1.5  | 39        |
| 72 | A Rapid Approach for the Detection, Quantification, and Discovery of Novel Sulfenic Acid or<br>S-Nitrosothiol Modified Proteins Using a Biotin-Switch Method. Methods in Enzymology, 2010, 473,<br>281-303.      | 0.4  | 39        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Mechanisms of Redox Signaling in Cardiovascular Disease. , 2010, , 43-60.                                                                                                                                                                    |     | Ο         |
| 74 | Transnitrosylating Nitric Oxide Species Directly Activate Type I Protein Kinase A, Providing a Novel<br>Adenylate Cyclase-independent Cross-talk to β-Adrenergic-like Signaling. Journal of Biological<br>Chemistry, 2009, 284, 29260-29268. | 1.6 | 53        |
| 75 | Redox signalling in cardiovascular disease. Proteomics - Clinical Applications, 2008, 2, 823-836.                                                                                                                                            | 0.8 | 20        |
| 76 | Peroxynitrite: <i>in vivo</i> cardioprotectant or arrhythmogen?. British Journal of Pharmacology, 2008, 155, 972-973.                                                                                                                        | 2.7 | 6         |
| 77 | Hydrogen peroxide as an endogenous mediator and exogenous tool in cardiovascular research: issues and considerations. Current Opinion in Pharmacology, 2008, 8, 153-159.                                                                     | 1.7 | 137       |
| 78 | Characterization of the phospholemman knockout mouse heart: depressed left ventricular function<br>with increased Na-K-ATPase activity. American Journal of Physiology - Heart and Circulatory<br>Physiology, 2008, 294, H613-H621.          | 1.5 | 42        |
| 79 | Cardiac peroxiredoxins undergo complex modifications during cardiac oxidant stress. American<br>Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H425-H433.                                                              | 1.5 | 44        |
| 80 | Cysteine Redox Sensor in PKGIa Enables Oxidant-Induced Activation. Science, 2007, 317, 1393-1397.                                                                                                                                            | 6.0 | 429       |
| 81 | Protein Sulfenation as a Redox Sensor. Molecular and Cellular Proteomics, 2007, 6, 1473-1484.                                                                                                                                                | 2.5 | 177       |
| 82 | ROLE OF p38-MITOGEN-ACTIVATED PROTEIN KINASE IN ISCHAEMIC PRECONDITIONING IN RAT HEART. Clinical and Experimental Pharmacology and Physiology, 2007, 35, 070924173348001-???.                                                                | 0.9 | 23        |
| 83 | Direct activation of Type I PKA by oxidants independently of cAMP is mediated by RI subunit interprotein disulphide bond formation. Journal of Molecular and Cellular Cardiology, 2006, 40, 928-929.                                         | 0.9 | 1         |
| 84 | Protein thiol oxidation in health and disease: Techniques for measuring disulfides and related modifications in complex protein mixtures. Free Radical Biology and Medicine, 2006, 40, 1889-1899.                                            | 1.3 | 228       |
| 85 | Oxidized Proteins in Cardiac Ischemia and Reperfusion. , 2006, , 605-649.                                                                                                                                                                    |     | 2         |
| 86 | The Utility of N,N-Biotinyl Glutathione Disulfide in the Study of Protein S-Glutathiolation. Molecular and Cellular Proteomics, 2006, 5, 215-225.                                                                                            | 2.5 | 120       |
| 87 | Oxidant-induced Activation of Type I Protein Kinase A Is Mediated by RI Subunit Interprotein Disulfide<br>Bond Formation. Journal of Biological Chemistry, 2006, 281, 21827-21836.                                                           | 1.6 | 216       |
| 88 | Serine 68 phosphorylation of phospholemman: acute isoform-specific activation of cardiac Na/K<br>ATPase. Cardiovascular Research, 2005, 65, 93-103.                                                                                          | 1.8 | 108       |
| 89 | Ischemic Preconditioning: A Potential Role for Protein S-Thiolation?. Antioxidants and Redox<br>Signaling, 2005, 7, 882-888.                                                                                                                 | 2.5 | 15        |
| 90 | Protein S-Thiolation: Emphasis on Cell Signaling and Gene Expression. Antioxidants and Redox Signaling, 2005, 7, 839-840.                                                                                                                    | 2.5 | 1         |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Widespread sulfenic acid formation in tissues in response to hydrogen peroxide. Proceedings of the<br>National Academy of Sciences of the United States of America, 2004, 101, 17982-17987.                                   | 3.3 | 268       |
| 92  | Ischemiaâ€induced phosphorylation of phospholemman directly activates rat cardiac Na/K ATPase. FASEB<br>Journal, 2004, 18, 197-199.                                                                                           | 0.2 | 107       |
| 93  | Detection and Mapping of Widespread Intermolecular Protein Disulfide Formation during Cardiac<br>Oxidative Stress Using Proteomics with Diagonal Electrophoresis. Journal of Biological Chemistry,<br>2004, 279, 41352-41360. | 1.6 | 175       |
| 94  | Reversible Cysteine-Targeted Oxidation of Proteins during Renal Oxidative Stress. Journal of the American Society of Nephrology: JASN, 2003, 14, S290-S296.                                                                   | 3.0 | 53        |
| 95  | Cardiac ischemia causes inhibition of the Na/K ATPase by a labile cytosolic compound whose production is linked to oxidant stress. Cardiovascular Research, 2003, 57, 1044-1051.                                              | 1.8 | 87        |
| 96  | S-Thiolation of HSP27 Regulates Its Multimeric Aggregate Size Independently of Phosphorylation.<br>Journal of Biological Chemistry, 2002, 277, 21189-21196.                                                                   | 1.6 | 65        |
| 97  | Glyceraldehyde Phosphate Dehydrogenase Oxidation During Cardiac Ischemia and Reperfusion. Journal<br>of Molecular and Cellular Cardiology, 2002, 34, 1549-1560.                                                               | 0.9 | 116       |
| 98  | Detection, Quantitation, Purification, and Identification of Cardiac Proteins S-Thiolated during<br>Ischemia and Reperfusion. Journal of Biological Chemistry, 2002, 277, 9806-9811.                                          | 1.6 | 157       |
| 99  | Purification of Proteins Susceptible to Oxidation at Cysteine Residues: Identification of Malate<br>Dehydrogenase as a Target for Sâ€Glutathiolation. Annals of the New York Academy of Sciences, 2002,<br>973, 529-532.      | 1.8 | 26        |
| 100 | α B Crystallin Translocation and Phosphorylation: Signal Transduction Pathways and Preconditioning in the Isolated Rat Heart. Journal of Molecular and Cellular Cardiology, 2001, 33, 1659-1671.                              | 0.9 | 54        |
| 101 | Differential Centrifugation Separates Cardiac Sarcolemmal and Endosomal Membranes from Langendorff-Perfused Rat Hearts. Analytical Biochemistry, 2001, 293, 216-223.                                                          | 1.1 | 40        |
| 102 | Lipid hydroperoxide modification of proteins during myocardial ischaemia. Cardiovascular Research, 2001, 51, 294-303.                                                                                                         | 1.8 | 30        |
| 103 | Ischemic Preconditioning: a Potential Role for Constitutive Low Molecular Weight Stress Protein<br>Translocation and Phosphorylation?. Journal of Molecular and Cellular Cardiology, 2000, 32, 961-971.                       | 0.9 | 28        |
| 104 | Formation of 4-hydroxy-2-nonenal-modified proteins in ischemic rat heart. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H935-H943.                                                            | 1.5 | 95        |
| 105 | Effects of medium fatty acid concentration, epinephrine, and glucose on palmitate-I-C14 oxidation and incorporation into neutral lipids by skeletal muscle in vitro. Journal of Lipid Research, 1961, 2, 376-382.             | 2.0 | 170       |