## MÃ<sup>3</sup>nia A R Martins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7538918/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Physico-chemical characterization of aqueous solutions of superbase ionic liquids with cellulose dissolution capability. Fluid Phase Equilibria, 2022, 556, 113414.                                                            | 2.5 | 15        |
| 2  | Encapsulated Protic Ionic Liquids as Sustainable Materials for CO <sub>2</sub> Separation. Industrial<br>& Engineering Chemistry Research, 2022, 61, 4046-4057.                                                                | 3.7 | 4         |
| 3  | Extensive characterization of choline chloride and its solid–liquid equilibrium with water. Physical<br>Chemistry Chemical Physics, 2022, 24, 14886-14897.                                                                     | 2.8 | 12        |
| 4  | The role of ionic vs. non-ionic excipients in APIs-based eutectic systems. European Journal of<br>Pharmaceutical Sciences, 2021, 156, 105583.                                                                                  | 4.0 | 10        |
| 5  | The impact of oligomeric anions on the speciation of protic ionic liquids. Fluid Phase Equilibria, 2021, 531, 112919.                                                                                                          | 2.5 | 7         |
| 6  | lonic liquids as entrainers for terpenes fractionation and other relevant separation problems.<br>Journal of Molecular Liquids, 2021, 323, 114647.                                                                             | 4.9 | 14        |
| 7  | Infinite Dilution Activity Coefficients in the Smectic and Isotropic Phases of Tetrafluoroborate-Based<br>Ionic Liquids. Journal of Chemical & Engineering Data, 2021, 66, 2587-2596.                                          | 1.9 | 5         |
| 8  | Development of a robust soft-SAFT model for protic ionic liquids using new high-pressure density<br>data. Fluid Phase Equilibria, 2021, 539, 113036.                                                                           | 2.5 | 10        |
| 9  | Differences on the impact of water on the deep eutectic solvents betaine/urea and choline/urea.<br>Journal of Chemical Physics, 2021, 155, 034501.                                                                             | 3.0 | 19        |
| 10 | Solid-liquid phase behavior of eutectic solvents containing sugar alcohols. Journal of Molecular<br>Liquids, 2021, 337, 116392.                                                                                                | 4.9 | 12        |
| 11 | Densities, heat capacities, viscosities, 1H- and 13C-NMR spectra, and solvatochromic parameters of binary mixtures of 1,3-dimethyl-1,3-diazinan-2-one (DMPU) and water. Journal of Chemical Thermodynamics, 2021, 161, 106550. | 2.0 | 3         |
| 12 | Non-Ideality in Thymol + Menthol Type V Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 2203-2211.                                                                                                 | 6.7 | 72        |
| 13 | Physical properties and solid-liquid equilibria for hexafluorophosphate-based ionic liquid ternary mixtures and their corresponding subsystems. Journal of Molecular Liquids, 2020, 316, 113742.                               | 4.9 | 4         |
| 14 | Understanding the Formation of Deep Eutectic Solvents: Betaine as a Universal Hydrogen Bond<br>Acceptor. ChemSusChem, 2020, 13, 4916-4921.                                                                                     | 6.8 | 68        |
| 15 | Eutectic Mixtures Based on Polyalcohols as Sustainable Solvents: Screening and Characterization.<br>ACS Sustainable Chemistry and Engineering, 2020, 8, 15317-15326.                                                           | 6.7 | 29        |
| 16 | Non-ionic hydrophobic eutectics – versatile solvents for tailored metal separation and valorisation.<br>Green Chemistry, 2020, 22, 2810-2820.                                                                                  | 9.0 | 67        |
| 17 | Liquefying Compounds by Forming Deep Eutectic Solvents: A Case Study for Organic Acids and Alcohols. Journal of Physical Chemistry B, 2020, 124, 4174-4184.                                                                    | 2.6 | 25        |
| 18 | Selection and characterization of non-ideal ionic liquids mixtures to be used in CO2 capture. Fluid Phase Equilibria, 2020, 518, 112621.                                                                                       | 2.5 | 23        |

MÃ<sup>3</sup>NIA A R MARTINS

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Insights into the Nature of Eutectic and Deep Eutectic Mixtures. Journal of Solution Chemistry, 2019, 48, 962-982.                                                                                        | 1.2 | 603       |
| 20 | Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: the quest for type V DES. Chemical Communications, 2019, 55, 10253-10256.                                             | 4.1 | 272       |
| 21 | Surface crystallization of ionic liquid crystals. Physical Chemistry Chemical Physics, 2019, 21, 17792-17800.                                                                                             | 2.8 | 6         |
| 22 | What a difference a methyl group makes – probing choline–urea molecular interactions through urea structure modification. Physical Chemistry Chemical Physics, 2019, 21, 18278-18289.                     | 2.8 | 24        |
| 23 | The Role of Charge Transfer in the Formation of Type I Deep Eutectic Solvent-Analogous Ionic Liquid<br>Mixtures. Molecules, 2019, 24, 3687.                                                               | 3.8 | 21        |
| 24 | Solid–Liquid Equilibria for Hexafluorophosphate-Based Ionic Liquid Quaternary Mixtures and Their<br>Corresponding Subsystems. Journal of Physical Chemistry B, 2019, 123, 8954-8969.                      | 2.6 | 3         |
| 25 | Greener Terpene–Terpene Eutectic Mixtures as Hydrophobic Solvents. ACS Sustainable Chemistry and<br>Engineering, 2019, 7, 17414-17423.                                                                    | 6.7 | 85        |
| 26 | Can cholinium chloride form eutectic solvents with organic chloride-based salts?. Fluid Phase<br>Equilibria, 2019, 493, 120-126.                                                                          | 2.5 | 16        |
| 27 | Solubility and solid phase studies of isomeric phenolic acids in pure solvents. Journal of Molecular<br>Liquids, 2018, 272, 1048-1057.                                                                    | 4.9 | 19        |
| 28 | Tunable Hydrophobic Eutectic Solvents Based on Terpenes and Monocarboxylic Acids. ACS Sustainable<br>Chemistry and Engineering, 2018, 6, 8836-8846.                                                       | 6.7 | 207       |
| 29 | Sustainable hydrophobic terpene-based eutectic solvents for the extraction and separation of metals.<br>Chemical Communications, 2018, 54, 8104-8107.                                                     | 4.1 | 116       |
| 30 | The Role of Polyfunctionality in the Formation of [Ch]Cl-Carboxylic Acid-Based Deep Eutectic Solvents. Industrial & Engineering Chemistry Research, 2018, 57, 11195-11209.                                | 3.7 | 46        |
| 31 | Design and Characterization of Sugar-Based Deep Eutectic Solvents Using Conductor-like Screening<br>Model for Real Solvents. ACS Sustainable Chemistry and Engineering, 2018, 6, 10724-10734.             | 6.7 | 98        |
| 32 | Measurement and PC-SAFT modeling of solid-liquid equilibrium of deep eutectic solvents of quaternary ammonium chlorides and carboxylic acids. Fluid Phase Equilibria, 2017, 448, 69-80.                   | 2.5 | 88        |
| 33 | Indirect assessment of the fusion properties of choline chloride from solid-liquid equilibria data.<br>Fluid Phase Equilibria, 2017, 448, 9-14.                                                           | 2.5 | 73        |
| 34 | Characterization and Modeling of the Liquid Phase of Deep Eutectic Solvents Based on Fatty<br>Acids/Alcohols and Choline Chloride. Industrial & Engineering Chemistry Research, 2017, 56,<br>12192-12202. | 3.7 | 57        |
| 35 | Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State. Industrial & Engineering Chemistry Research, 2017, 56, 9895-9905.                     | 3.7 | 9         |
| 36 | Terpenes solubility in water and their environmental distribution. Journal of Molecular Liquids, 2017, 241, 996-1002.                                                                                     | 4.9 | 59        |

MÃ<sup>3</sup>NIA A R MARTINS

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Vapor pressure predictions of multi-functional oxygen-containing organic compounds with COSMO-RS. Atmospheric Environment, 2016, 133, 135-144.                                           | 4.1 | 15        |
| 38 | Aqueous solubilities of five N-(diethylaminothiocarbonyl)benzimido derivatives at TÂ=Â298.15ÂK.<br>Chemosphere, 2016, 160, 45-53.                                                        | 8.2 | 5         |
| 39 | Densities, viscosities and derived thermophysical properties of water-saturated imidazolium-based ionic liquids. Fluid Phase Equilibria, 2016, 407, 188-196.                             | 2.5 | 67        |
| 40 | Selection of Ionic Liquids to be Used as Separation Agents for Terpenes and Terpenoids. ACS Sustainable Chemistry and Engineering, 2016, 4, 548-556.                                     | 6.7 | 49        |
| 41 | Measurements of activity coefficients at infinite dilution of organic solutes and water on polar imidazolium-based ionic liquids. Journal of Chemical Thermodynamics, 2015, 91, 194-203. | 2.0 | 45        |
| 42 | Analysis of the isomerism effect on the mutual solubilities of<br>bis(trifluoromethylsulfonyl)imide-based ionic liquids with water. Fluid Phase Equilibria, 2014, 381,<br>28-35.         | 2.5 | 13        |
| 43 | Partial Molar Volumes of Glycine and dl-Alanine in Aqueous Ammonium Sulfate Solutions at 278.15, 288.15, 298.15 and 308.15ÂK. Journal of Solution Chemistry, 2014, 43, 972-988.          | 1.2 | 14        |
| 44 | Impact of the cation symmetry on the mutual solubilities between water and imidazolium-based ionic<br>liquids. Fluid Phase Equilibria, 2014, 375, 161-167.                               | 2.5 | 30        |