
## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7538585/publications.pdf Version: 2024-02-01



I-F MOSER

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with<br>Efficiency Exceeding 9%. Scientific Reports, 2012, 2, 591.                                                                    | 3.3  | 6,763     |
| 2  | Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395, 583-585.                                                                                          | 27.8 | 3,353     |
| 3  | Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells. Journal of Physical<br>Chemistry B, 2005, 109, 14945-14953.                                                                                       | 2.6  | 1,855     |
| 4  | A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials, 2003, 2, 402-407.                                                                    | 27.5 | 1,466     |
| 5  | Dye-sensitized solar cells for efficient power generation under ambient lighting. Nature Photonics, 2017, 11, 372-378.                                                                                                            | 31.4 | 871       |
| 6  | Subpicosecond Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium Dioxide Films.<br>The Journal of Physical Chemistry, 1996, 100, 20056-20062.                                                               | 2.9  | 815       |
| 7  | Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation. The Journal of Physical Chemistry, 1990, 94, 8720-8726.                      | 2.9  | 700       |
| 8  | Unreacted Pbl <sub>2</sub> as a Double-Edged Sword for Enhancing the Performance of Perovskite<br>Solar Cells. Journal of the American Chemical Society, 2016, 138, 10331-10343.                                                  | 13.7 | 696       |
| 9  | Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nature Photonics, 2014, 8, 250-255.                                                                                    | 31.4 | 648       |
| 10 | Charge carrier trapping and recombination dynamics in small semiconductor particles. Journal of the<br>American Chemical Society, 1985, 107, 8054-8059.                                                                           | 13.7 | 616       |
| 11 | Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium<br>Dioxide Films. Journal of Physical Chemistry B, 2000, 104, 538-547.                                                            | 2.6  | 613       |
| 12 | A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells.<br>Journal of Physical Chemistry B, 2003, 107, 13280-13285.                                                                      | 2.6  | 607       |
| 13 | A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials.<br>Nature Communications, 2012, 3, 631.                                                                                          | 12.8 | 554       |
| 14 | High Molar Extinction Coefficient Heteroleptic Ruthenium Complexes for Thin Film Dye-Sensitized<br>Solar Cells. Journal of the American Chemical Society, 2006, 128, 4146-4154.                                                   | 13.7 | 538       |
| 15 | Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates. Langmuir, 1991, 7, 3012-3018.                                                                                             | 3.5  | 522       |
| 16 | An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nature Chemistry, 2010, 2, 385-389.                                                                                                         | 13.6 | 510       |
| 17 | Efficiencies of photoinduced electron-transfer reactions: role of the Marcus inverted region in<br>return electron transfer within geminate radical-ion pairs. Journal of the American Chemical Society,<br>1990, 112, 4290-4301. | 13.7 | 428       |
| 18 | Significant Improvement of Dyeâ€Sensitized Solar Cell Performance by Small Structural Modification in<br>Ï€â€Conjugated Donor–Acceptor Dyes. Advanced Functional Materials, 2012, 22, 1291-1302.                                  | 14.9 | 404       |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Coll(dbbip)22+ Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells.<br>Journal of Physical Chemistry B, 2001, 105, 10461-10464.                                                                          | 2.6  | 402       |
| 20 | Femtosecond Electron-Transfer Dynamics at a Sensitizing Dyeâ^'Semiconductor (TiO2) Interface. The<br>Journal of Physical Chemistry, 1996, 100, 9577-9578.                                                                                 | 2.9  | 399       |
| 21 | Highly efficient sensitization of titanium dioxide. Journal of the American Chemical Society, 1985, 107, 2988-2990.                                                                                                                       | 13.7 | 392       |
| 22 | Charge Separation and Efficient Light Energy Conversion in Sensitized Mesoscopic Solar Cells Based on Binary Ionic Liquids. Journal of the American Chemical Society, 2005, 127, 6850-6856.                                               | 13.7 | 383       |
| 23 | A New Antiâ€Counterfeiting Feature Relying on Invisible Luminescent Full Color Images Printed with<br>Lanthanideâ€Based Inks. Advanced Functional Materials, 2014, 24, 5029-5036.                                                         | 14.9 | 368       |
| 24 | A Solvent-Free, SeCN-/(SeCN)3- Based Ionic Liquid Electrolyte for High-Efficiency Dye-Sensitized<br>Nanocrystalline Solar Cells. Journal of the American Chemical Society, 2004, 126, 7164-7165.                                          | 13.7 | 364       |
| 25 | Cooperative Effect of Adsorbed Cations and Iodide on the Interception of Back Electron Transfer in the Dye Sensitization of Nanocrystalline TiO2. Journal of Physical Chemistry B, 2000, 104, 1791-1795.                                  | 2.6  | 341       |
| 26 | High-Efficiency and Stable Mesoscopic Dye-Sensitized Solar Cells Based on a High Molar Extinction<br>Coefficient Ruthenium Sensitizer and Nonvolatile Electrolyte. Advanced Materials, 2007, 19, 1133-1137.                               | 21.0 | 332       |
| 27 | Stable New Sensitizer with Improved Light Harvesting for Nanocrystalline Dye-Sensitized Solar Cells.<br>Advanced Materials, 2004, 16, 1806-1811.                                                                                          | 21.0 | 324       |
| 28 | Photosensitized electron injection in colloidal semiconductors. Journal of the American Chemical<br>Society, 1984, 106, 6557-6564.                                                                                                        | 13.7 | 312       |
| 29 | Photoelectrochemical Studies on Nanocrystalline Hematite Films. Chemistry of Materials, 1994, 6,<br>858-863.                                                                                                                              | 6.7  | 307       |
| 30 | Synthesis and Characterization of High-Photoactivity Electrodeposited Cu <sub>2</sub> O Solar<br>Absorber by Photoelectrochemistry and Ultrafast Spectroscopy. Journal of Physical Chemistry C, 2012,<br>116, 7341-7350.                  | 3.1  | 305       |
| 31 | An Alternative Efficient Redox Couple for the Dye-Sensitized Solar Cell System. Chemistry - A European<br>Journal, 2003, 9, 3756-3763.                                                                                                    | 3.3  | 304       |
| 32 | The Role of Surface States in the Ultrafast Photoinduced Electron Transfer from Sensitizing Dye<br>Molecules to Semiconductor Colloids. Journal of Physical Chemistry B, 2000, 104, 8995-9003.                                            | 2.6  | 269       |
| 33 | Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells. Nature Communications, 2019, 10, 3008.                                                                                             | 12.8 | 268       |
| 34 | Molecular-Scale Interface Engineering of TiO2 Nanocrystals: Improve the Efficiency and Stability of Dye-Sensitized Solar Cells. Advanced Materials, 2003, 15, 2101-2104.                                                                  | 21.0 | 266       |
| 35 | Nanocrystalline Mesoporous Strontium Titanate as Photoelectrode Material for Photosensitized<br>Solar Devices:  Increasing Photovoltage through Flatband Potential Engineering. Journal of Physical<br>Chemistry B, 1999, 103, 9328-9332. | 2.6  | 258       |
| 36 | Long-Lived Photoinduced Charge Separation and Redox-Type Photochromism on Mesoporous Oxide<br>Films Sensitized by Molecular Dyads. Journal of the American Chemical Society, 1999, 121, 1324-1336.                                        | 13.7 | 253       |

| #  | Article                                                                                                                                                                                                                                 | IF      | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|
| 37 | Real-Time Observation of Photoinduced Adiabatic Electron Transfer in Strongly Coupled<br>Dye/Semiconductor Colloidal Systems with a 6 fs Time Constant. Journal of Physical Chemistry B,<br>2002, 106, 6494-6499.                       | 2.6     | 239       |
| 38 | Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage. Journal of the American Chemical Society, 2016, 138, 15087-15096.                                                                               | 13.7    | 239       |
| 39 | Controlling Phosphorescence Color and Quantum Yields in Cationic Iridium Complexes:Â A Combined<br>Experimental and Theoretical Study. Inorganic Chemistry, 2007, 46, 5989-6001.                                                        | 4.0     | 237       |
| 40 | Enhanced Electron Collection Efficiency in Dye-Sensitized Solar Cells Based on Nanostructured<br>TiO <sub>2</sub> Hollow Fibers. Nano Letters, 2010, 10, 1632-1638.                                                                     | 9.1     | 234       |
| 41 | 11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials. Nature<br>Communications, 2017, 8, 15390.                                                                                             | 12.8    | 229       |
| 42 | Rationale for Kinetic Heterogeneity of Ultrafast Light-Induced Electron Transfer from Ru(II) Complex<br>Sensitizers to Nanocrystalline TiO2. Journal of the American Chemical Society, 2005, 127, 12150-12151.                          | 13.7    | 213       |
| 43 | Observation of temperature independent heterogeneous electron transfer reactions in the inverted Marcus region. Chemical Physics, 1993, 176, 493-500.                                                                                   | 1.9     | 206       |
| 44 | Visible and Near-Infrared Luminescence of Lanthanide-Containing Dimetallic Triple-Stranded Helicates:Â<br>Energy Transfer Mechanisms in the SmIlland YbIIIMolecular Edifices. Journal of Physical Chemistry A,<br>2002, 106, 1670-1677. | 2.5     | 199       |
| 45 | A molecular photosensitizer achieves a Voc of 1.24 V enabling highly efficient and stable dye-sensitized solar cells with copper(II/I)-based electrolyte. Nature Communications, 2021, 12, 1777.                                        | 12.8    | 196       |
| 46 | Charge Separation in Solid-State Dye-Sensitized Heterojunction Solar Cells. Journal of the American<br>Chemical Society, 1999, 121, 7445-7446.                                                                                          | 13.7    | 195       |
| 47 | Conversion of Light into Electricity with Trinuclear Ruthenium Complexes Adsorbed on Textured<br>TiO2Films. Helvetica Chimica Acta, 1990, 73, 1788-1803.                                                                                | 1.6     | 194       |
| 48 | Light-induced electron transfer in colloidal semiconductor dispersions: single vs. dielectronic<br>reduction of acceptors by conduction-band electrons. Journal of the American Chemical Society, 1983,<br>105, 6547-6555.              | 13.7    | 191       |
| 49 | Stable, Highâ€Efficiency Ionicâ€Liquidâ€Based Mesoscopic Dyeâ€Sensitized Solar Cells. Small, 2007, 3, 2094-2                                                                                                                            | 10210.0 | 191       |
| 50 | Efficient Electron Transfer and Sensitizer Regeneration in Stable π-Extended<br>Tetrathiafulvalene-Sensitized Solar Cells. Journal of the American Chemical Society, 2010, 132,<br>5164-5169.                                           | 13.7    | 188       |
| 51 | Modulation of the Rate of Electron Injection in Dye-Sensitized Nanocrystalline TiO2Films by Externally Applied Bias. Journal of Physical Chemistry B, 2001, 105, 7424-7431.                                                             | 2.6     | 171       |
| 52 | lon Coordinating Sensitizer for High Efficiency Mesoscopic Dye-Sensitized Solar Cells:  Influence of<br>Lithium Ions on the Photovoltaic Performance of Liquid and Solid-State Cells. Nano Letters, 2006, 6,<br>769-773.                | 9.1     | 161       |
| 53 | Molecular Engineering of a Fluorene Donor for Dye-Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 2733-2739.                                                                                                                  | 6.7     | 154       |
| 54 | Comprehensive control of voltage loss enables 11.7% efficient solid-state dye-sensitized solar cells.<br>Energy and Environmental Science, 2018, 11, 1779-1787.                                                                         | 30.8    | 148       |

| #  | Article                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | High Molar Extinction Coefficient Ion-Coordinating Ruthenium Sensitizer for Efficient and Stable<br>Mesoscopic Dye-Sensitized Solar Cells. Advanced Functional Materials, 2007, 17, 154-160.                                                                           | 14.9 | 147       |
| 56 | Charge migration and charge transfer in molecular systems. Structural Dynamics, 2017, 4, 061508.                                                                                                                                                                       | 2.3  | 146       |
| 57 | The Effect of Hole Transport Material Pore Filling on Photovoltaic Performance in Solidâ€&tate<br>Dyeâ€&ensitized Solar Cells. Advanced Energy Materials, 2011, 1, 407-414.                                                                                            | 19.5 | 130       |
| 58 | Merocyanine Aggregation in Mesoporous Networks. Journal of the American Chemical Society, 1996, 118, 5420-5431.                                                                                                                                                        | 13.7 | 127       |
| 59 | Electron-transfer reactions in the Marcus inverted region. Charge recombination versus charge shift reactions. Journal of the American Chemical Society, 1989, 111, 1917-1919.                                                                                         | 13.7 | 116       |
| 60 | Comment on "Measurement of Ultrafast Photoinduced Electron Transfer from Chemically Anchored<br>Ruâ^'Dye Molecules into Empty Electronic States in a Colloidal Anatase TiO2Film― Journal of Physical<br>Chemistry B, 1998, 102, 3649-3650.                             | 2.6  | 114       |
| 61 | Inhibition of Electron-Hole Recombination in Substitutionally Doped Colloidal Semiconductor<br>Crystallites. Helvetica Chimica Acta, 1987, 70, 1596-1604.                                                                                                              | 1.6  | 111       |
| 62 | Amphiphilic Ruthenium Sensitizer with 4,4â€~-Diphosphonic Acid-2,2â€~-bipyridine as Anchoring Ligand for<br>Nanocrystalline Dye Sensitized Solar Cells. Journal of Physical Chemistry B, 2004, 108, 17553-17559.                                                       | 2.6  | 105       |
| 63 | Atomic-Level Microstructure of Efficient Formamidinium-Based Perovskite Solar Cells Stabilized by<br>5-Ammonium Valeric Acid Iodide Revealed by Multinuclear and Two-Dimensional Solid-State NMR.<br>Journal of the American Chemical Society, 2019, 141, 17659-17669. | 13.7 | 104       |
| 64 | Photoelectrochemistry with Colloidal Semiconductors; Laser Studies of Halide Oxidation in<br>Colloidal Dispersions of TiO2and α-Fe2O3. Helvetica Chimica Acta, 1982, 65, 1436-1444.                                                                                    | 1.6  | 102       |
| 65 | New pyrido[3,4-b]pyrazine-based sensitizers for efficient and stable dye-sensitized solar cells. Chemical Science, 2014, 5, 206-214.                                                                                                                                   | 7.4  | 102       |
| 66 | Synthesis, Characterization, and Photocatalytic Activities of Nanoparticulate N, S-Codoped<br>TiO <sub>2</sub> Having Different Surface-to-Volume Ratios. Journal of Physical Chemistry C, 2010, 114,<br>2717-2723.                                                    | 3.1  | 99        |
| 67 | Femtosecond Dynamics of Interfacial and Intermolecular Electron Transfer at Eosin-Sensitized Metal<br>Oxide Nanoparticles. Journal of Physical Chemistry B, 2003, 107, 3215-3224.                                                                                      | 2.6  | 98        |
| 68 | Energy and Hole Transfer between Dyes Attached to Titania in Cosensitized Dye-Sensitized Solar Cells.<br>Journal of the American Chemical Society, 2011, 133, 10662-10667.                                                                                             | 13.7 | 96        |
| 69 | Molecular photovoltaics. Coordination Chemistry Reviews, 1998, 171, 245-250.                                                                                                                                                                                           | 18.8 | 92        |
| 70 | Achievement of incident photon to electric current conversion yields exceeding 80% in the spectral sensitization of titanium dioxide by coumarin. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 259, 59-65.                           | 0.1  | 89        |
| 71 | Dissociation of Charge Transfer States and Carrier Separation in Bilayer Organic Solar Cells: A<br>Time-Resolved Electroabsorption Spectroscopy Study. Journal of the American Chemical Society, 2015,<br>137, 8192-8198.                                              | 13.7 | 86        |
| 72 | Ligand Engineering for the Efficient Dye-Sensitized Solar Cells with Ruthenium Sensitizers and Cobalt<br>Electrolytes. Inorganic Chemistry, 2016, 55, 6653-6659.                                                                                                       | 4.0  | 80        |

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | High efficiency solid-state sensitized heterojunction photovoltaic device. Nano Today, 2010, 5, 169-174.                                                                                                                            | 11.9 | 76        |
| 74 | Butyronitrile-Based Electrolyte for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2011, 133, 13103-13109.                                                                                                   | 13.7 | 75        |
| 75 | A Close Look at Charge Generation in Polymer:Fullerene Blends with Microstructure Control.<br>Journal of the American Chemical Society, 2015, 137, 2908-2918.                                                                       | 13.7 | 75        |
| 76 | Molecular design of metal-free D–π-A substituted sensitizers for dye-sensitized solar cells. Energy<br>and Environmental Science, 2010, 3, 1757.                                                                                    | 30.8 | 70        |
| 77 | Effect of molecular dimension on the rate of return electron transfer within photoproduced geminate radical ion pairs. Journal of the American Chemical Society, 1988, 110, 1991-1993.                                              | 13.7 | 69        |
| 78 | The fate of electron–hole pairs in polymer:fullerene blends for organic photovoltaics. Nature<br>Communications, 2016, 7, 12556.                                                                                                    | 12.8 | 68        |
| 79 | Engineering of thiocyanate-free Ru(ii) sensitizers for high efficiency dye-sensitized solar cells.<br>Chemical Science, 2013, 4, 2423.                                                                                              | 7.4  | 67        |
| 80 | Extraordinarily Efficient Conduction in a Redoxâ€Active Ionic Liquid. ChemPhysChem, 2011, 12, 145-149.                                                                                                                              | 2.1  | 65        |
| 81 | Voltage enhancement in dye-sensitized solar cell using (001)-oriented anatase TiO2 nanosheets.<br>Journal of Solid State Electrochemistry, 2012, 16, 2993-3001.                                                                     | 2.5  | 64        |
| 82 | Effect of Extended Ï€-Conjugation of the Donor Structure of Organic D–Aâ~'π–A Dyes on the<br>Photovoltaic Performance of Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118,<br>16486-16493.                    | 3.1  | 63        |
| 83 | Exciton, Biexciton, and Hot Exciton Dynamics in CsPbBr <sub>3</sub> Colloidal Nanoplatelets. Journal of Physical Chemistry Letters, 2020, 11, 387-394.                                                                              | 4.6  | 62        |
| 84 | Towards Compatibility between Ruthenium Sensitizers and Cobalt Electrolytes in Dye‧ensitized Solar<br>Cells. Angewandte Chemie - International Edition, 2013, 52, 8731-8735.                                                        | 13.8 | 61        |
| 85 | Phenanthreneâ€Fusedâ€Quinoxaline as a Key Building Block for Highly Efficient and Stable Sensitizers in<br>Copperâ€Electrolyteâ€Based Dye‧ensitized Solar Cells. Angewandte Chemie - International Edition, 2020,<br>59, 9324-9329. | 13.8 | 59        |
| 86 | EPR study of vanadium (4+) in the anatase and rutile phases ofTiO2. Physical Review B, 1986, 34, 3060-3068.                                                                                                                         | 3.2  | 56        |
| 87 | Influence of Iodide Concentration on the Efficiency and Stability of Dyeâ€5ensitized Solar Cell<br>Containing Nonâ€Volatile Electrolyte. ChemPhysChem, 2009, 10, 1834-1838.                                                         | 2.1  | 54        |
| 88 | Influence of the Anchoring Modes on the Electronic and Photovoltaic Properties of Dâ^'π–A Dyes.<br>Journal of Physical Chemistry C, 2012, 116, 16876-16884.                                                                         | 3.1  | 53        |
| 89 | High Extinction Coefficient "Antenna―Dye in Solid-State Dye-Sensitized Solar Cells: A Photophysical<br>and Electronic Study. Journal of Physical Chemistry C, 2008, 112, 7562-7566.                                                 | 3.1  | 52        |
| 90 | Photoinduced Interfacial Electron Injection Dynamics in Dye-Sensitized Solar Cells under<br>Photovoltaic Operating Conditions. Journal of Physical Chemistry Letters, 2012, 3, 3786-3790.                                           | 4.6  | 52        |

| #   | Article                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Time-resolved rise of iodine molecule (1-) upon oxidation of iodide at aqueous titania colloid. The<br>Journal of Physical Chemistry, 1993, 97, 3806-3812.                                                                                                              | 2.9  | 50        |
| 92  | Amphiphilic Polypyridyl Ruthenium Complexes with Substituted 2,2â€~-Dipyridylamine Ligands for<br>Nanocrystalline Dye-Sensitized Solar Cells. Chemistry of Materials, 2004, 16, 3246-3251.                                                                              | 6.7  | 50        |
| 93  | Position-Dependent Extension of π-Conjugation in D-π-A Dye Sensitizers and the Impact on the<br>Charge-Transfer Properties. Journal of Physical Chemistry C, 2013, 117, 13805-13815.                                                                                    | 3.1  | 50        |
| 94  | Photoinduced Charge Injection from Vibronically Hot Excited Molecules of a Dye Sensitizer into<br>Acceptor States of Wide-Bandgap Oxide Semiconductors. Zeitschrift Fur Physikalische Chemie, 1999,<br>212, 85-92.                                                      | 2.8  | 49        |
| 95  | Organization and Reactivity of Nanoparticles at Molecular Interfaces. Part I. Photoelectrochemical<br>Responses Involving TiO2 Nanoparticles Assembled at Polarizable Water   1,2-Dichloroethane<br>Junctions. Journal of Physical Chemistry B, 2002, 106, 10908-10914. | 2.6  | 49        |
| 96  | Unravelling the Potential for Dithienopyrrole Sensitizers in Dye-Sensitized Solar Cells. Chemistry of<br>Materials, 2013, 25, 2642-2648.                                                                                                                                | 6.7  | 49        |
| 97  | Effect of Coordination Sphere Geometry of Copper Redox Mediators on Regeneration and<br>Recombination Behavior in Dye-Sensitized Solar Cell Applications. ACS Applied Energy Materials, 2018, 1,<br>4950-4962.                                                          | 5.1  | 49        |
| 98  | Picosecond Time Resolved Studies of Photosensitized Electron Injection in Colloidal Semiconductors.<br>Helvetica Chimica Acta, 1985, 68, 1686-1690.                                                                                                                     | 1.6  | 48        |
| 99  | The influence of microstructure on charge separation dynamics in organic bulk heterojunction materials for solar cell applications. Journal of Materials Chemistry A, 2014, 2, 6218-6230.                                                                               | 10.3 | 48        |
| 100 | Slow recombination unveiled. Nature Materials, 2017, 16, 4-6.                                                                                                                                                                                                           | 27.5 | 47        |
| 101 | Crystal Orientation Drives the Interface Physics at Two/Three-Dimensional Hybrid Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 5713-5720.                                                                                                               | 4.6  | 47        |
| 102 | The Excitation Wavelength and Solvent Dependance of the Kinetics of Electron Injection in<br>Ru(dcbpy) <sub>2</sub> (NCS) <sub>2</sub> Sensitized Nanocrystalline TiO <sub>2</sub> Films.<br>Zeitschrift Fur Physikalische Chemie, 1999, 212, 93-98.                    | 2.8  | 44        |
| 103 | Observation of photoinduced electron transfer in dye/semiconductor colloidal systems with different coupling strengths. Chemical Physics, 2002, 285, 39-45.                                                                                                             | 1.9  | 43        |
| 104 | Energy and charge transfer cascade in methylammonium lead bromide perovskite nanoparticle aggregates. Chemical Science, 2017, 8, 4371-4380.                                                                                                                             | 7.4  | 40        |
| 105 | Enhanced cyanine solar cell performance upon oxygen doping. Organic Electronics, 2008, 9, 85-94.                                                                                                                                                                        | 2.6  | 39        |
| 106 | Quantitative Diffuse Reflectance and Transmittance Infrared Spectroscopy of Nondiluted Powders.<br>Applied Spectroscopy, 1992, 46, 1874-1886.                                                                                                                           | 2.2  | 37        |
| 107 | Photoinduced electron transfer and redox-type photochromism of a TiO2-anchored molecular diad.<br>Chemical Communications, 1996, , 1163-1164.                                                                                                                           | 4.1  | 37        |
| 108 | Application of Cu(ii) and Zn(ii) coproporphyrins as sensitizers for thin film dye sensitized solar cells.<br>Energy and Environmental Science, 2010, 3, 956.                                                                                                            | 30.8 | 37        |

| #   | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Dynamics of Photoinduced Interfacial Electron Transfer and Charge Transport in Dye-Sensitized<br>Mesoscopic Semiconductors. Chimia, 2007, 61, 631.                                                                | 0.6  | 35        |
| 110 | Multielectron storage and hydrogen generation with colloidal semiconductors. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 3129-3132.                                | 7.1  | 34        |
| 111 | Exciton and Carrier Dynamics in Two-Dimensional Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 7692-7701.                                                                                          | 4.6  | 33        |
| 112 | Direct Synthesis of Selenium Nanowire Mesh on a Solid Substrate and Insights into Ultrafast<br>Photocarrier Dynamics. Journal of Physical Chemistry C, 2018, 122, 25134-25141.                                    | 3.1  | 32        |
| 113 | Ultrafast photoinduced electron transfer in coumarin 343 sensitized TiO2-colloidal solution.<br>International Journal of Photoenergy, 1999, 1, 153-155.                                                           | 2.5  | 31        |
| 114 | Dynamics of Interfacial Charge Transfer States and Carriers Separation in Dye-Sensitized Solar Cells: A<br>Time-Resolved Terahertz Spectroscopy Study. Journal of Physical Chemistry C, 2015, 119, 26266-26274.   | 3.1  | 31        |
| 115 | Light induced redox reactions involving mammalian ferritin as photocatalyst. Journal of<br>Photochemistry and Photobiology B: Biology, 1997, 41, 83-89.                                                           | 3.8  | 30        |
| 116 | Blue Photosensitizer with Copper(II/I) Redox Mediator for Efficient and Stable Dye‣ensitized Solar<br>Cells. Advanced Functional Materials, 2020, 30, 2004804.                                                    | 14.9 | 30        |
| 117 | Time-independent, high electron mobility in thin PC 61 BM films: Relevance to organic photovoltaics.<br>Organic Electronics, 2014, 15, 3729-3734.                                                                 | 2.6  | 29        |
| 118 | Semiclassical Approach to Photophysics Beyond Kasha's Rule and Vibronic Spectroscopy Beyond the<br>Condon Approximation. The Case of Azulene. Journal of Chemical Theory and Computation, 2020, 16,<br>2617-2626. | 5.3  | 29        |
| 119 | Intensity Dependent Femtosecond Dynamics in a PBDTTPD-Based Solar Cell Material. Journal of Physical<br>Chemistry Letters, 2012, 3, 2952-2958.                                                                    | 4.6  | 28        |
| 120 | Methylammonium Triiodide for Defect Engineering of High-Efficiency Perovskite Solar Cells. ACS<br>Energy Letters, 2021, 6, 3650-3660.                                                                             | 17.4 | 28        |
| 121 | Quantitative Diffuse Reflectance and Diffuse Transmittance Infrared Spectroscopy of Surface-Derivatized Silica Powders. Analytical Chemistry, 1994, 66, 2260-2266.                                                | 6.5  | 27        |
| 122 | Factors controlling the efficiencies of photoinduced electron-transfer reactions. Research on Chemical Intermediates, 1995, 21, 793-806.                                                                          | 2.7  | 26        |
| 123 | Kinetics of the Regeneration by Iodide of Dye Sensitizers Adsorbed on Mesoporous Titania. Journal of<br>Physical Chemistry C, 2014, 118, 17108-17115.                                                             | 3.1  | 26        |
| 124 | Deuterium separation and infrared photochemistry in CF2HCl. Chemical Physics, 1983, 79, 277-288.                                                                                                                  | 1.9  | 25        |
| 125 | Later rather than sooner. Nature Materials, 2005, 4, 723-724.                                                                                                                                                     | 27.5 | 25        |
| 126 | Liquid State and Zombie Dye Sensitized Solar Cells with Copper Bipyridine Complexes Functionalized with Alkoxy Groups. Journal of Physical Chemistry C, 2020, 124, 7071-7081.                                     | 3.1  | 24        |

| #   | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Photoinduced hole-transfer in semiconducting polymer/low-bandgap cyanine dye blends: evidence for unit charge separation quantum yield. Physical Chemistry Chemical Physics, 2009, 11, 8886.                        | 2.8  | 23        |
| 128 | Temperature-Dependent Ordering Phenomena of a Polyiodide System in a Redox-Active Ionic Liquid.<br>Journal of Physical Chemistry C, 2012, 116, 7989-7992.                                                           | 3.1  | 23        |
| 129 | Direct Observation of Shallow Trap States in Thermal Equilibrium with Bandâ€Edge Excitons in Strongly<br>Confined CsPbBr <sub>3</sub> Perovskite Nanoplatelets. Advanced Optical Materials, 2021, 9, 2001308.       | 7.3  | 23        |
| 130 | The Role of Alkyl Chain Length and Halide Counter Ion in Layered Dionâ^'Jacobson Perovskites with<br>Aromatic Spacers. Journal of Physical Chemistry Letters, 2021, 12, 10325-10332.                                | 4.6  | 23        |
| 131 | Reduction of acceptor relay species by conduction band electrons of colloidal titanium dioxide;<br>light-induced charge separation in the picosecond time domain. Chemical Physics Letters, 1987, 136,<br>47-51.    | 2.6  | 22        |
| 132 | Organisation and Reactivity of Nanoparticles at Molecular Interfaces. Part II. Dye Sensitisation of TiO2<br>Nanoparticles Assembled at the Water 1,2-Dichloroethane Interface. ChemPhysChem, 2003, 4, 85-89.        | 2.1  | 22        |
| 133 | Dynamics of Photocarrier Separation in MAPbI <sub>3</sub> Perovskite Multigrain Films under a Quasistatic Electric Field. Journal of Physical Chemistry C, 2016, 120, 19595-19602.                                  | 3.1  | 22        |
| 134 | Ultrafast charge separation dynamics in opaque, operational dye-sensitized solar cells revealed by femtosecond diffuse reflectance spectroscopy. Scientific Reports, 2016, 6, 24465.                                | 3.3  | 22        |
| 135 | Precise Control of Intramolecular Chargeâ€Transport: The Interplay of Distance and Conformational Effects. Chemistry - A European Journal, 2013, 19, 7575-7586.                                                     | 3.3  | 21        |
| 136 | Longâ€Range Ï€â€Conjugation in Phenothiazineâ€containing Donor–Acceptor Dyes for Application in<br>Dyeâ€Sensitized Solar Cells. ChemSusChem, 2015, 8, 3859-3868.                                                    | 6.8  | 21        |
| 137 | Effect of Posttreatment of Titania Mesoscopic Films by TiCl <sub>4</sub> in Solid-State Dye-Sensitized<br>Solar Cells: A Time-Resolved Spectroscopy Study. Journal of Physical Chemistry C, 2012, 116, 26721-26727. | 3.1  | 20        |
| 138 | Enhanced Intersystem Crossing and Transient Electron Spin Polarization in a Photoexcited<br>Pentacene–Trityl Radical. Journal of Physical Chemistry A, 2020, 124, 6068-6075.                                        | 2.5  | 19        |
| 139 | Origin of the Kinetic Heterogeneity of Ultrafast Light-Induced Electron Transfer from Ru(II)-Complex<br>Dyes to Nanocrystalline Semiconducting Particles. Chimia, 2005, 59, 123-125.                                | 0.6  | 17        |
| 140 | Conduction Through Viscoelastic Phase in a Redoxâ€Active Ionic Liquid at Reduced Temperatures.<br>Advanced Materials, 2012, 24, 781-784.                                                                            | 21.0 | 17        |
| 141 | Investigation of Interfacial Charge Separation at PbS QDs/(001) TiO <sub>2</sub> Nanosheets<br>Heterojunction Solar Cell. Particle and Particle Systems Characterization, 2015, 32, 483-488.                        | 2.3  | 17        |
| 142 | Phenanthreneâ€Fusedâ€Quinoxaline as a Key Building Block for Highly Efficient and Stable Sensitizers in<br>Copperâ€Electrolyteâ€Based Dyeâ€Sensitized Solar Cells. Angewandte Chemie, 2020, 132, 9410-9415.         | 2.0  | 17        |
| 143 | Unraveling the Dual Character of Sulfur Atoms on Sensitizers in Dye-Sensitized Solar Cells. ACS<br>Applied Materials & Interfaces, 2016, 8, 26827-26833.                                                            | 8.0  | 16        |
| 144 | Naphthalenediimide/Formamidinium-Based Low-Dimensional Perovskites. Chemistry of Materials, 2021,<br>33, 6412-6420.                                                                                                 | 6.7  | 16        |

| #   | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Dynamics of Interfacial Electron Transfer from Betanin to Nanocrystalline TiO <sub>2</sub> : The<br>Pursuit of Two-Electron Injection. Journal of Physical Chemistry C, 2015, 119, 19030-19041.                       | 3.1  | 15        |
| 146 | Synthesis and optoelectronic properties of chemically modified bi-fluorenylidenes. Journal of Materials Chemistry C, 2016, 4, 3798-3808.                                                                              | 5.5  | 15        |
| 147 | Dynamics and Mechanisms of Interfacial Photoinduced Electron Transfer Processes of Third Generation Photovoltaics and Photocatalysis. Chimia, 2011, 65, 704.                                                          | 0.6  | 14        |
| 148 | Sensitization of fullerenes by covalent attachment of a diketopyrrolopyrrole chromophore. Journal of Materials Chemistry, 2012, 22, 13286.                                                                            | 6.7  | 14        |
| 149 | Beyond Vibrationally Mediated Electron Transfer: Coherent Phenomena Induced by Ultrafast Charge<br>Separation. Journal of Physical Chemistry C, 2016, 120, 8534-8539.                                                 | 3.1  | 14        |
| 150 | Harvesting UV photons for solar energy conversion applications. Physical Chemistry Chemical Physics, 2014, 16, 2090-2099.                                                                                             | 2.8  | 13        |
| 151 | Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems.<br>Structural Dynamics, 2017, 4, 061503.                                                                                | 2.3  | 13        |
| 152 | Photoinduced processes in lead iodide perovskite solid-state solar cells. Proceedings of SPIE, 2013, , .                                                                                                              | 0.8  | 12        |
| 153 | Terahertz Time-Domain Spectroscopy Study of the Conductivity of Hole-Transporting Materials.<br>Chimia, 2009, 63, 189-192.                                                                                            | 0.6  | 10        |
| 154 | Ultrafast charge transfer in solid-state films of pristine cyanine borate and blends with fullerene.<br>Journal of Materials Chemistry A, 2015, 3, 10935-10941.                                                       | 10.3 | 10        |
| 155 | Lateral Intermolecular Electronic Interactions of Diketopyrrolopyrrole Dâ^ï€â€"A Solar Dye Sensitizers<br>Adsorbed on Mesoporous Alumina. Journal of Physical Chemistry C, 2018, 122, 19348-19358.                    | 3.1  | 9         |
| 156 | A tandem redox system with a cobalt complex and 2-azaadamantane- <i>N</i> -oxyl for fast dye<br>regeneration and open circuit voltages exceeding 1 V. Journal of Materials Chemistry A, 2019, 7,<br>10998-11006.      | 10.3 | 8         |
| 157 | On the kinetics and mechanism of light-induced electron transfer at the semiconductor/electrolyte interface. Solar Energy Materials and Solar Cells, 1995, 38, 343-345.                                               | 6.2  | 7         |
| 158 | Unveiling the Nature of Charge Carrier Interactions by Electroabsorption Spectroscopy: An<br>Illustration with Lead-Halide Perovskites. Chimia, 2017, 71, 231.                                                        | 0.6  | 7         |
| 159 | Donor Effect on the Photoinduced Interfacial Charge Transfer Dynamics of Dâ^'ï€â€"A<br>Diketopyrrolopyrrole Dye Sensitizers Adsorbed on Titanium Dioxide. Journal of Physical Chemistry C,<br>2018, 122, 19359-19369. | 3.1  | 7         |
| 160 | Hot Carrier Mobility Dynamics Unravel Competing Subpicosecond Processes in Lead Halide<br>Perovskites. Journal of Physical Chemistry C, 2021, 125, 98-106.                                                            | 3.1  | 7         |
| 161 | Aqueous Solvation Dynamics at Metal Oxide Surfaces. Journal of Physical Chemistry B, 2006, 110, 7835-7844.                                                                                                            | 2.6  | 6         |
| 162 | Revealing Exciton and Metal–Ligand Conduction Band Charge Transfer Absorption Spectra in<br>Cu-Zn-In-S Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 27858-27866.                                         | 3.1  | 6         |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Tuning Napththalenediimide Cations for Incorporation into Ruddlesden–Popper-Type Hybrid<br>Perovskites. Chemistry of Materials, 0, , .                                                                                                                           | 6.7 | 6         |
| 164 | Excited state electron and energy transfer of a highly fluorescent heterocyclic dye: a laser flash<br>photolysis study of 2,5-dimethyl-3,6-diphenylpyrrolo[3,4-c]pyrrole-1,4-dione. Journal of the Chemical<br>Society Chemical Communications, 1995, , 303-304. | 2.0 | 4         |
| 165 | Surface Modification of a Hydrogen-Bonded Pigment: A Fluorescence Spectroscopy Study. Journal of Colloid and Interface Science, 1999, 216, 189-192.                                                                                                              | 9.4 | 4         |
| 166 | Two-electron photo-oxidation of betanin on titanium dioxide and potential for improved dye-sensitized solar energy conversion. Proceedings of SPIE, 2014, , .                                                                                                    | 0.8 | 4         |
| 167 | Resonant Band-Edge Emissive States in Strongly Confined CsPbBr <sub>3</sub> Perovskite<br>Nanoplatelets. Journal of Physical Chemistry C, 2021, 125, 14317-14325.                                                                                                | 3.1 | 4         |
| 168 | Critical role of H-aggregation for high-efficiency photoinduced charge generation in pristine pentamethine cyanine salts. Physical Chemistry Chemical Physics, 2021, 23, 23886-23895.                                                                            | 2.8 | 4         |
| 169 | <title>Beyond vibrationally mediated electron transfer: interfacial charge injection on a sub-10-fs&lt;br&gt;time scale</title> . , 2003, 5223, 121.                                                                                                             |     | 3         |
| 170 | Electron donor-acceptor distance dependence of the dynamics of light-induced interfacial charge transfer in the dye-sensitization of nanocrystalline oxide semiconductors. , 2006, , .                                                                           |     | 3         |
| 171 | Ï€-Conjugated Donor-Acceptor Systems as Metal-Free Sensitizers for Dye-Sensitized Solar Cell<br>Applications. EPJ Web of Conferences, 2013, 41, 08013.                                                                                                           | 0.3 | 2         |
| 172 | Surface States Control Ultrafast Electron Injection in Dye/Semiconductor Colloidal Systems.<br>Springer Series in Chemical Physics, 2001, , 456-458.                                                                                                             | 0.2 | 2         |
| 173 | Solvation Dynamics at Water-ZrO2 Interfaces. , 2004, , 541-544.                                                                                                                                                                                                  |     | 2         |
| 174 | A Novel Efficient, Iodide-Free Redox Mediator for Dye-Sensitized Solar Cells. Materials Research<br>Society Symposia Proceedings, 2007, 1013, 1.                                                                                                                 | 0.1 | 1         |
| 175 | Photoinduced Interfacial Electron Transfer and Lateral Charge Transport in Molecular<br>Donor–Acceptor Photovoltaic Systems. Chimia, 2011, 65, 353.                                                                                                              | 0.6 | 1         |
| 176 | Using the Stark effect to understand charge generation in organic solar cells. Proceedings of SPIE, 2015, , .                                                                                                                                                    | 0.8 | 1         |
| 177 | Comment on photoelectrochemistry. Solar Energy Materials and Solar Cells, 1995, 38, 321-322.                                                                                                                                                                     | 6.2 | 0         |
| 178 | A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. , 2010, , 88-93.                                                                                                                      |     | 0         |
| 179 | Surface defect states control ultrafast electron injection in dye/semiconductor colloidal systems. ,<br>2000, , .                                                                                                                                                |     | 0         |
| 180 | Photoinduced electron transfer in dye/semiconductor systems on a sub-10-fs time scale. , 2002, , .                                                                                                                                                               |     | 0         |

| #   | Article                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Photoinduced electron transfer in dye/semiconductor systems on a sub-10-fs time scale. Springer Series in Chemical Physics, 2003, , 316-318. | 0.2 | 0         |
| 182 | Conductivity in Dye-Sensitized TiO2 probed by Optical-Pump THz-Probe Spectroscopy. , 2010, , .                                               |     | 0         |
| 183 | Hot Carrier Dynamics in Lead Halide Perovskites: Mobility and Carrier-Phonon Coupling. , 0, , .                                              |     | 0         |