
Carsten Gram Hansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7538269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Label2label: training a neural network to selectively restore cellular structures in fluorescence microscopy. Journal of Cell Science, 2022, 135, .	1.2	5
2	Hippo-Yap/Taz signalling in zebrafish regeneration. Npj Regenerative Medicine, 2022, 7, 9.	2.5	11
3	<i>PERCC1</i> , a new member of the <i>Yap/TAZ</i> / <i>FAM181</i> transcriptional co-regulator family. Bioinformatics Advances, 2022, 2, .	0.9	2
4	The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clinical Science, 2022, 136, 197-222.	1.8	86
5	Cellular feedback dynamics and multilevel regulation driven by the hippo pathway. Biochemical Society Transactions, 2021, 49, 1515-1527.	1.6	11
6	The transcription factor EGR2 is indispensable for tissue-specific imprinting of alveolar macrophages in health and tissue repair. Science Immunology, 2021, 6, eabj2132.	5.6	23
7	Proteogenomics of non-small cell lung cancer reveals molecular subtypes associated with specific therapeutic targets and immune-evasion mechanisms. Nature Cancer, 2021, 2, 1224-1242.	5.7	37
8	The Hippo Pathway, YAP/TAZ, and the Plasma Membrane. Trends in Cell Biology, 2020, 30, 32-48.	3.6	146
9	Listeria monocytogenes Exploits Host Caveolin for Cell-to-Cell Spreading. MBio, 2020, 11, .	1.8	11
10	Special Issue on "Disease and the Hippo Pathway― Cells, 2019, 8, 1179.	1.8	0
11	The Hippo Pathway in Prostate Cancer. Cells, 2019, 8, 370.	1.8	69
12	The Hippo Pathway Regulates Caveolae Expression and Mediates Flow Response via Caveolae. Current Biology, 2019, 29, 242-255.e6.	1.8	56
13	Immunofluorescence Study of Endogenous YAP in Mammalian Cells. Methods in Molecular Biology, 2019, 1893, 97-106.	0.4	7
14	EHD Proteins Cooperate to Generate Caveolar Clusters and to Maintain Caveolae during Repeated Mechanical Stress. Current Biology, 2017, 27, 2951-2962.e5.	1.8	61
15	YAP and TAZ: a nexus for Hippo signaling and beyond. Trends in Cell Biology, 2015, 25, 499-513.	3.6	445
16	The emerging roles of YAP and TAZ in cancer. Nature Reviews Cancer, 2015, 15, 73-79.	12.8	928
17	Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nature Cell Biology, 2015, 17, 500-510.	4.6	421
18	MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nature Communications, 2015, 6, 8357.	5.8	388

CARSTEN GRAM HANSEN

#	Article	IF	CITATIONS
19	The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Cell Research, 2015, 25, 1299-1313.	5.7	164
20	Cavin-3 Knockout Mice Show that Cavin-3 Is Not Essential for Caveolae Formation, for Maintenance of Body Composition, or for Glucose Tolerance. PLoS ONE, 2014, 9, e102935.	1.1	16
21	Deletion of cavin genes reveals tissue-specific mechanisms for morphogenesis of endothelial caveolae. Nature Communications, 2013, 4, 1831.	5.8	113
22	Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. Journal of Cell Science, 2011, 124, 2777-2785.	1.2	140
23	Exploring the caves: cavins, caveolins and caveolae. Trends in Cell Biology, 2010, 20, 177-186.	3.6	259
24	SDPR induces membrane curvature and functions in the formation of caveolae. Nature Cell Biology, 2009, 11, 807-814.	4.6	218
25	Molecular mechanisms of clathrin-independent endocytosis. Journal of Cell Science, 2009, 122, 1713-1721.	1.2	251
26	The Hippo pathway drives the cellular response to hydrostatic pressure. EMBO Journal, 0, , .	3.5	7