Matthew D Lynes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7537941/publications.pdf

Version: 2024-02-01

	279798	361022
2,373	23	35
citations	h-index	g-index
38	38	3554
docs citations	times ranked	citing authors
	citations 38	2,373 23 citations h-index 38 38

#	Article	IF	CITATIONS
1	Silk Hydrogel-Mediated Delivery of Bone Morphogenetic Protein 7 Directly to Subcutaneous White Adipose Tissue Increases Browning and Energy Expenditure. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	6
2	Endothelial Cells Induced Progenitors Into Brown Fat to Reduce Atherosclerosis. Circulation Research, 2022, 131, 168-183.	4.5	14
3	Brown Fat–Activating Lipokine 12,13-diHOME in Human Milk Is Associated With Infant Adiposity. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e943-e956.	3.6	32
4	Endogenous Fatty Acid Synthesis Drives Brown Adipose Tissue Involution. Cell Reports, 2021, 34, 108624.	6.4	33
5	Vascular smooth muscle-derived Trpv1+ progenitors are a source of cold-induced thermogenic adipocytes. Nature Metabolism, 2021, 3, 485-495.	11.9	64
6	Defining the lineage of thermogenic perivascular adipose tissue. Nature Metabolism, 2021, 3, 469-484.	11.9	63
7	CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Science Translational Medicine, 2020, 12, .	12.4	80
8	Commentary on: "The Presence of Active Brown Adipose Tissue Determines Cold-Induced Energy Expenditure and Oxylipin Profiles in Humans― Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2995-e2997.	3.6	0
9	FGF6 and FGF9 regulate UCP1 expression independent of brown adipogenesis. Nature Communications, 2020, 11, 1421.	12.8	67
10	Integrated metabolomics reveals altered lipid metabolism in adipose tissue in a model of extreme longevity. GeroScience, 2020, 42, 1527-1546.	4.6	20
11	Cell-autonomous light sensitivity via Opsin3 regulates fuel utilization in brown adipocytes. PLoS Biology, 2020, 18, e3000630.	5.6	41
12	12-Lipoxygenase Regulates Cold Adaptation and Glucose Metabolism by Producing the Omega-3 Lipid 12-HEPE from Brown Fat. Cell Metabolism, 2019, 30, 768-783.e7.	16.2	132
13	Lipokines and Thermogenesis. Endocrinology, 2019, 160, 2314-2325.	2.8	24
14	TGF- \hat{l}^22 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nature Metabolism, 2019, 1, 291-303.	11.9	128
15	Adapted MS/MS ^{ALL} Shotgun Lipidomics Approach for Analysis of Cardiolipin Molecular Species. Lipids, 2018, 53, 133-142.	1.7	25
16	Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal activity. Nature Medicine, 2018, 24, 292-303.	30.7	154
17	12,13-diHOME: An Exercise-Induced Lipokine that Increases Skeletal Muscle Fatty Acid Uptake. Cell Metabolism, 2018, 27, 1111-1120.e3.	16.2	215
18	Deciphering adipose tissue heterogeneity. Annals of the New York Academy of Sciences, 2018, 1411, 5-20.	3.8	77

#	Article	IF	Citations
19	Cardiolipin Synthesis in Brown and Beige Fat Mitochondria Is Essential for Systemic Energy Homeostasis. Cell Metabolism, 2018, 28, 159-174.e11.	16.2	114
20	Cold-Activated Lipid Dynamics in Adipose Tissue Highlights a Role for Cardiolipin in Thermogenic Metabolism. Cell Reports, 2018, 24, 781-790.	6.4	60
21	The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nature Medicine, 2017, 23, 631-637.	30.7	309
22	Reestablishment of Energy Balance in a Male Mouse Model With POMC Neuron Deletion of BMPR1A. Endocrinology, 2017, 158, 4233-4245.	2.8	12
23	Integrating Extracellular Flux Measurements and Genome-Scale Modeling Reveals Differences between Brown and White Adipocytes. Cell Reports, 2017, 21, 3040-3048.	6.4	24
24	Monoacylglycerol Analysis Using MS/MSALL Quadruple Time of Flight Mass Spectrometry. Metabolites, 2016, 6, 25.	2.9	24
25	Loss of BMP receptor type 1A in murine adipose tissue attenuates age-related onset of insulin resistance. Diabetologia, 2016, 59, 1769-1777.	6.3	16
26	Connexin 43 Mediates White Adipose Tissue Beiging by Facilitating the Propagation of Sympathetic Neuronal Signals. Cell Metabolism, 2016, 24, 420-433.	16.2	80
27	Curcumin analogues as selective fluorescence imaging probes for brown adipose tissue and monitoring browning. Scientific Reports, 2015, 5, 13116.	3.3	36
28	Disruption of Insulin Signaling in Myf5-Expressing Progenitors Leads to Marked Paucity of Brown Fat but Normal Muscle Development. Endocrinology, 2015, 156, 1637-1647.	2.8	16
29	The thermogenic circuit: Regulators of thermogenic competency and differentiation. Genes and Diseases, 2015, 2, 164-172.	3.4	13
30	Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nature Medicine, 2015, 21, 760-768.	30.7	240
31	Unwiring the transcriptional heat circuit. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14318-14319.	7.1	3
32	Isolation of Progenitors that Exhibit Myogenic/Osteogenic Bipotency InÂVitro by Fluorescence-Activated Cell Sorting from Human Fetal Muscle. Stem Cell Reports, 2014, 2, 92-106.	4.8	64
33	Increased Mitochondrial Activity in BMP7-Treated Brown Adipocytes, Due to Increased CPT1- and CD36-Mediated Fatty Acid Uptake. Antioxidants and Redox Signaling, 2013, 19, 243-257.	5.4	85
34	Involvement of CD36 and intestinal alkaline phosphatases in fatty acid transport in enterocytes, and the response to a high-fat diet. Life Sciences, 2011, 88, 384-391.	4.3	32
35	Interactions between CD36 and global intestinal alkaline phosphatase in mouse small intestine and effects of high-fat diet. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1738-R1747.	1.8	57