Alaa Atiaa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7537904/publications.pdf Version: 2024-02-01

Διλλ Δτιλ

#	Article	IF	CITATIONS
1	Spatial assessment of gross vertical reservoir heterogeneity using geostatistics and GIS-based machine-learning classifiers: A case study from the Zubair Formation, Rumaila oil field, southern Iraq. Journal of Petroleum Science and Engineering, 2022, 208, 109482.	2.1	6
2	Assessing the spatial and temporal variations of terrestrial water storage of Iraq using GRACE satellite data and reliability–resiliency–vulnerability indicators. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	4
3	Spatial Modeling of Hydrocarbon Productivity in the Nahr Umr Formation at the Luhais Oil Field, Southern Iraq. Natural Resources Research, 2021, 30, 765-787.	2.2	1
4	Probability mapping of groundwater contamination by hydrocarbon from the deep oil reservoirs using GIS-based machine-learning algorithms: a case study of the Dammam aquifer (middle of Iraq). Environmental Science and Pollution Research, 2021, 28, 13736-13751.	2.7	5
5	Assessment of groundwater potential in terms of the availability and quality of the resource: a case study from Iraq. Environmental Earth Sciences, 2021, 80, 1.	1.3	15
6	Assessing gully erosion susceptibility using topographic derived attributes, multi-criteria decision-making, and machine learning classifiers. Geomatics, Natural Hazards and Risk, 2021, 12, 3035-3062.	2.0	10
7	Modeling of Groundwater Potential Using Cloud Computing Platform: A Case Study from Nineveh Plain, Northern Iraq. Water (Switzerland), 2021, 13, 3330.	1.2	8
8	Evaluating the Dibdibba Aquifer Productivity at the Karbala–Najaf Plateau (Central Iraq) Using GIS-Based Tree Machine Learning Algorithms. Natural Resources Research, 2020, 29, 1989-2009.	2.2	12
9	Comparative assessment of bivariate, multivariate and machine learning models for mapping flood proneness. Natural Hazards, 2020, 100, 461-491.	1.6	24
10	In flood susceptibility assessment, is it scientifically correct to represent flood events as a point vector format and create flood inventory map?. Journal of Hydrology, 2020, 590, 125475.	2.3	13
11	Delineation of Groundwater Recharge Zones in Ali Al-Gharbi District, Southern Iraq Using Multi-criteria Decision-making Model and GIS. Journal of Geovisualization and Spatial Analysis, 2020, 4, 1.	2.1	12
12	Spatial analysis of groundwater flowing artesian condition using machine learning techniques. Groundwater for Sustainable Development, 2020, 11, 100418.	2.3	7
13	Prediction of total organic carbon at Rumaila oil field, Southern Iraq using conventional well logs and machine learning algorithms. Marine and Petroleum Geology, 2020, 116, 104347.	1.5	36
14	GIS-based machine learning models for mapping tar mat zones in upper part (DJ unit) of Zubair Formation in North Rumaila supergiant oil field, southern Iraq. Journal of Petroleum Science and Engineering, 2019, 178, 559-574.	2.1	12
15	Selection of gridded precipitation data for Iraq using compromise programming. Measurement: Journal of the International Measurement Confederation, 2019, 132, 87-98.	2.5	81
16	Susceptibility mapping of gully erosion using GIS-based statistical bivariate models: a case study from Ali Al-Gharbi District, Maysan Governorate, southern Iraq. Environmental Earth Sciences, 2018, 77, 1.	1.3	39
17	A comparative assessment of fuzzy logic and evidential belief function models for mapping artesian zone boundary in an arid region, Iraq. Journal of Hydroinformatics, 2018, 20, 497-519.	1.1	2
18	Mapping groundwater zones contaminated by hydrocarbons in the Dammam aquifer in the Karbala–Najaf plateau, Iraq. Environmental Earth Sciences, 2018, 77, 1.	1.3	6

Alaa Atiaa

#	Article	IF	CITATIONS
19	Mapping flood susceptibility in an arid region of southern Iraq using ensemble machine learning classifiers: a comparative study. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	82
20	Modeling of groundwater productivity in northeastern Wasit Governorate, Iraq using frequency ratio and Shannon's entropy models. Applied Water Science, 2017, 7, 699-716.	2.8	55
21	The application of Dempster–Shafer theory of evidence for assessing groundwater vulnerability at Galal Badra basin, Wasit governorate, east of Iraq. Applied Water Science, 2017, 7, 1725-1740.	2.8	33
22	Spatial Mapping of Groundwater Potential Using Entropy Weighted Linear Aggregate Novel Approach and GIS. Arabian Journal for Science and Engineering, 2017, 42, 1185-1199.	1.7	27
23	Flowing well potential zoning at Iraqi southern and western deserts using frequency ratio and geographic information system. International Journal of Environmental Science and Technology, 2017, 14, 2249-2268.	1.8	2
24	A GIS-Based Integrated Fuzzy Logic and Analytic Hierarchy Process Model for Assessing Water-Harvesting Zones in Northeastern Maysan Governorate, Iraq. Arabian Journal for Science and Engineering, 2017, 42, 2487-2499.	1.7	40
25	A novel geographical information system-based Ant Miner algorithm model for delineating groundwater flowing artesian well boundary: a case study from Iraqi southern and western deserts. Environmental Earth Sciences, 2017, 76, 1.	1.3	9
26	Long-term trends in daily temperature extremes in Iraq. Atmospheric Research, 2017, 198, 97-107.	1.8	128
27	A GIS-based DRASTIC model for assessing intrinsic groundwater vulnerability in northeastern Missan governorate, southern Iraq. Applied Water Science, 2017, 7, 89-101.	2.8	60
28	A GIS-based integration of catastrophe theory and analytical hierarchy process for mapping flood susceptibility: a case study of Teeb area, Southern Iraq. Environmental Earth Sciences, 2016, 75, 1.	1.3	42
29	Prediction of groundwater flowing well zone at An-Najif Province, central Iraq using evidential belief functions model and GIS. Environmental Monitoring and Assessment, 2016, 188, 549.	1.3	12
30	A GIS-based combining of frequency ratio and index of entropy approaches for mapping groundwater availability zones at Badra–Al Al-Gharbi–Teeb areas, Iraq. Sustainable Water Resources Management, 2016, 2, 265-283.	1.0	69
31	Spatial mapping of artesian zone at Iraqi southern desert using a GIS-based random forest machine learning model. Modeling Earth Systems and Environment, 2016, 2, 1.	1.9	29
32	Modeling of stage–discharge relationship for Gharraf River, southern Iraq using backpropagation artificial neural networks, M5 decision trees, and Takagi–Sugeno inference system technique: a comparative study. Applied Water Science, 2016, 6, 407-420.	2.8	19
33	Groundwater potential mapping at northeastern Wasit and Missan governorates, Iraq using a data-driven weights of evidence technique in framework of GIS. Environmental Earth Sciences, 2015, 74, 1109-1124.	1.3	60
34	A comparison between index of entropy and catastrophe theory methods for mapping groundwater potential in an arid region. Environmental Monitoring and Assessment, 2015, 187, 576.	1.3	56
35	Assessment of the groundwater at Ali Al-Garbi area, Iraq using geochemical modeling and environmental isotopes. , 0, 176, 114-122.		0