Frank Emmert-Streib

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7537684/frank-emmert-streib-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

315
papers

3,493
citations

29
h-index
g-index

48
g-index

4,538
ext. papers

4,538
ext. citations

4
avg, IF

L-index

#	Paper	IF	Citations
315	Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial intelligence. <i>Information Fusion</i> , 2022 , 79, 263-278	16.7	15
314	Identifying key interactions between process variables of different material categories using mutual information-based network inference method. <i>Procedia Computer Science</i> , 2022 , 200, 1550-1564	1.6	0
313	Comparison of Text Mining Models for Food and Dietary Constituent Named-Entity Recognition. <i>Machine Learning and Knowledge Extraction</i> , 2022 , 4, 254-275	3.1	3
312	A data-centric review of deep transfer learning with applications to text data. <i>Information Sciences</i> , 2021 , 585, 498-498	7.7	3
311	From the Digital Data Revolution toward a Digital Society: Pervasiveness of Artificial Intelligence. <i>Machine Learning and Knowledge Extraction</i> , 2021 , 3, 284-298	3.1	5
310	Analysis of the real number of infected people by COVID-19: A system dynamics approach. <i>PLoS ONE</i> , 2021 , 16, e0245728	3.7	О
309	Data-Driven Computational Social Network Science: Predictive and Inferential Models for Web-Enabled Scientific Discoveries. <i>Frontiers in Big Data</i> , 2021 , 4, 591749	2.8	4
308	Orbit Entropy and Symmetry Index Revisited. <i>Mathematics</i> , 2021 , 9, 1086	2.3	
307	Ensuring the Robustness and Reliability of Data-Driven Knowledge Discovery Models in Production and Manufacturing. <i>Frontiers in Artificial Intelligence</i> , 2021 , 4, 576892	3	3
306	Limitations of Explainability for Established Prognostic Biomarkers of Prostate Cancer. <i>Frontiers in Genetics</i> , 2021 , 12, 649429	4.5	O
305	Robustness of differential gene expression analysis of RNA-seq. <i>Computational and Structural Biotechnology Journal</i> , 2021 , 19, 3470-3481	6.8	4
304	Properties of Commuting Graphs over Semidihedral Groups. Symmetry, 2021, 13, 103	2.7	1
303	Prognostic gene expression signatures of breast cancer are lacking a sensible biological meaning. <i>Scientific Reports</i> , 2021 , 11, 156	4.9	5
302	On the relationship between PageRank and automorphisms of a graph. <i>Information Sciences</i> , 2021 , 579, 401-417	7.7	0
301	Relationships between symmetry-based graph measures. <i>Information Sciences</i> , 2021 , 581, 291-303	7.7	O
300	In-flight Wind Field Identification and Prediction of Parafoil Systems. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 1958	2.6	2
299	Properties of Entropy-Based Topological Measures of Fullerenes. <i>Mathematics</i> , 2020 , 8, 740	2.3	8

(2019-2020)

298	Explainable artificial intelligence and machine learning: A reality rooted perspective. <i>Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery</i> , 2020 , 10, e1368	6.9	20
297	Relations and bounds for the zeros of graph polynomials using vertex orbits. <i>Applied Mathematics and Computation</i> , 2020 , 380, 125239	2.7	1
296	Glioblastoma Multiforme Stem Cell Cycle Arrest by Alkylaminophenol Through the Modulation of EGFR and CSC Signaling Pathways. <i>Cells</i> , 2020 , 9,	7.9	10
295	On the zeros of the partial Hosoya polynomial of graphs. <i>Information Sciences</i> , 2020 , 524, 199-215	7.7	4
294	The Orbit-Polynomial: A Novel Measure of Symmetry in Networks. <i>IEEE Access</i> , 2020 , 8, 36100-36112	3.5	7
293	Combining deep learning with token selection for patient phenotyping from electronic health records. <i>Scientific Reports</i> , 2020 , 10, 1432	4.9	13
292	The watching system as a generalization of identifying code. <i>Applied Mathematics and Computation</i> , 2020 , 380, 125302	2.7	1
291	Artificial Intelligence: A Clarification of Misconceptions, Myths and Desired Status. <i>Frontiers in Artificial Intelligence</i> , 2020 , 3, 524339	3	6
290	On graph entropy measures based on the number of independent sets and matchings. <i>Information Sciences</i> , 2020 , 516, 491-504	7.7	4
289	A novel epidemic model considering demographics and intercity commuting on complex dynamical networks. <i>Applied Mathematics and Computation</i> , 2020 , 386, 125517	2.7	9
288	On the Degeneracy of the Orbit Polynomial and Related Graph Polynomials. Symmetry, 2020 , 12, 1643	2.7	3
287	Graph-based exploitation of gene ontology using GOxploreR for scrutinizing biological significance. <i>Scientific Reports</i> , 2020 , 10, 16672	4.9	8
286	The Role of Symmetry in the Aesthetics of Residential Building Falldes Using Cognitive Science Methods. <i>Symmetry</i> , 2020 , 12, 1438	2.7	2
285	Distributed Event-Triggered Circular Formation Control for Multiple Anonymous Mobile Robots With Order Preservation and Obstacle Avoidance. <i>IEEE Access</i> , 2020 , 8, 167288-167299	3.5	4
284	Named Entity Recognition and Relation Detection for Biomedical Information Extraction. <i>Frontiers in Cell and Developmental Biology</i> , 2020 , 8, 673	5.7	26
283	Partition and Colored Distances in Graphs Induced to Subsets of Vertices and Some of Its Applications. <i>Symmetry</i> , 2020 , 12, 2027	2.7	1
282	An Introductory Review of Deep Learning for Prediction Models With Big Data. <i>Frontiers in Artificial Intelligence</i> , 2020 , 3, 4	3	114
281	A Note on Distance-Based Entropy of Dendrimers. <i>Axioms</i> , 2019 , 8, 98	1.6	2

2 80	Proteome-transcriptome alignment of molecular portraits achieved by self-contained gene set analysis: Consensus colon cancer subtypes case study. <i>PLoS ONE</i> , 2019 , 14, e0221444	3.7	1
279	Introduction to Survival Analysis in Practice. <i>Machine Learning and Knowledge Extraction</i> , 2019 , 1, 1013-	19.38	18
278	2-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)benzonitrile as novel inhibitor of receptor tyrosine kinase and PI3K/AKT/mTOR signaling pathway in glioblastoma. <i>European Journal of Medicinal Chemistry</i> , 2019 , 166, 291-303	6.8	29
277	Large-Scale Simultaneous Inference with Hypothesis Testing: Multiple Testing Procedures in Practice. <i>Machine Learning and Knowledge Extraction</i> , 2019 , 1, 653-683	3.1	5
276	Hermitian normalized Laplacian matrix for directed networks. <i>Information Sciences</i> , 2019 , 495, 175-184	7.7	4
275	Systems Pharmacogenomic Landscape of Drug Similarities from LINCS data: Drug Association Networks. <i>Scientific Reports</i> , 2019 , 9, 7849	4.9	4
274	A Graph Theoretic Approach to Construct Desired Cryptographic Boolean Functions. <i>Axioms</i> , 2019 , 8, 40	1.6	
273	Comparing deep belief networks with support vector machines for classifying gene expression data from complex disorders. <i>FEBS Open Bio</i> , 2019 , 9, 1232-1248	2.7	13
272	On Properties of Distance-Based Entropies on Fullerene Graphs. <i>Entropy</i> , 2019 , 21,	2.8	12
271	Evaluation of Regression Models: Model Assessment, Model Selection and Generalization Error. <i>Machine Learning and Knowledge Extraction</i> , 2019 , 1, 521-551	3.1	24
270	Global Genetics Research in Prostate Cancer: A Text Mining and Computational Network Theory Approach. <i>Frontiers in Genetics</i> , 2019 , 10, 70	4.5	4
269	Alkylaminophenol Induces G1/S Phase Cell Cycle Arrest in Glioblastoma Cells Through p53 and Cyclin-Dependent Kinase Signaling Pathway. <i>Frontiers in Pharmacology</i> , 2019 , 10, 330	5.6	25
268	Hosoya entropy of fullerene graphs. Applied Mathematics and Computation, 2019, 352, 88-98	2.7	14
267	Graph entropy based on the number of spanning forests of c-cyclic graphs. <i>Applied Mathematics and Computation</i> , 2019 , 363, 124616	2.7	3
266	L1000 Viewer: A Search Engine and Web Interface for the LINCS Data Repository. <i>Frontiers in Genetics</i> , 2019 , 10, 557	4.5	7
265	On efficient network similarity measures. Applied Mathematics and Computation, 2019, 362, 124521	2.7	1
264	High-Dimensional LASSO-Based Computational Regression Models: Regularization, Shrinkage, and Selection. <i>Machine Learning and Knowledge Extraction</i> , 2019 , 1, 359-383	3.1	26
263	Understanding Statistical Hypothesis Testing: The Logic of Statistical Inference. <i>Machine Learning and Knowledge Extraction</i> , 2019 , 1, 945-961	3.1	17

262	The Hosoya Entropy of Graphs Revisited. Symmetry, 2019 , 11, 1013	2.7	12
261	The Maximum Hosoya Index of Unicyclic Graphs with Diameter at Most Four. Symmetry, 2019 , 11, 1034	2.7	2
260	Measuring the complexity of directed graphs: A polynomial-based approach. <i>PLoS ONE</i> , 2019 , 14, e022.	37,4,5	6
259	Prostate Cancer Gene Regulatory Network Inferred from RNA-Seq Data. <i>Current Genomics</i> , 2019 , 20, 38-48	2.6	5
258	A comprehensive survey of error measures for evaluating binary decision making in data science. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2019 , 9, e1303	6.9	12
257	A Note on Graphs with Prescribed Orbit Structure. <i>Entropy</i> , 2019 , 21, 1118	2.8	2
256	Utilizing Social Media Data for Psychoanalysis to Study Human Personality. <i>Frontiers in Psychology</i> , 2019 , 10, 2596	3.4	4
255	Ensuring Quality Standards and Reproducible Research for Data Analysis Services in Oncology: A Cooperative Service Model. <i>Frontiers in Cell and Developmental Biology</i> , 2019 , 7, 349	5.7	2
254	Comparing biological information contained in mRNA and non-coding RNAs for classification of lung cancer patients. <i>BMC Cancer</i> , 2019 , 19, 1176	4.8	9
253	Constrained Covariance Matrices With a Biologically Realistic Structure: Comparison of Methods for Generating High-Dimensional Gaussian Graphical Models. <i>Frontiers in Applied Mathematics and Statistics</i> , 2019 , 5,	2.2	3
252	Towards detecting structural branching and cyclicity in graphs: A polynomial-based approach. <i>Information Sciences</i> , 2019 , 471, 19-28	7.7	5
251	On the degeneracy of the Randilentropy and related graph measures. <i>Information Sciences</i> , 2019 , 501, 680-687	7.7	O
250	A review of connectivity map and computational approaches in pharmacogenomics. <i>Briefings in Bioinformatics</i> , 2018 , 19, 506-523	13.4	101
249	Properties of graph distance measures by means of discrete inequalities. <i>Applied Mathematical Modelling</i> , 2018 , 59, 739-749	4.5	3
248	Graph measures with high discrimination power revisited: A random polynomial approach. <i>Information Sciences</i> , 2018 , 467, 407-414	7.7	4
247	MetrIntSimilan Accurate and Robust Metric for Comparison of Similarity in Intelligence of Any Number of Cooperative Multiagent Systems. <i>Symmetry</i> , 2018 , 10, 48	2.7	5
246	Comments to Quantification of network structural dissimilarities published by Schieber et al. <i>Mathematical Methods in the Applied Sciences</i> , 2018 , 41, 5711-5713	2.3	
245	Computational analysis of structural properties of economic and financial networks. <i>Journal of Network Theory in Finance</i> , 2018 , 1-32	1.5	7

244	A Machine Learning Perspective on Personalized Medicine: An Automized, Comprehensive Knowledge Base with Ontology for Pattern Recognition. <i>Machine Learning and Knowledge Extraction</i> , 2018 , 1, 149-156	3.1	19
243	Defining Data Science by a Data-Driven Quantification of the Community. <i>Machine Learning and Knowledge Extraction</i> , 2018 , 1, 235-251	3.1	17
242	Harnessing the biological complexity of Big Data from LINCS gene expression signatures. <i>PLoS ONE</i> , 2018 , 13, e0201937	3.7	5
241	Data Analytics Applications for Streaming Data From Social Media: What to Predict?. <i>Frontiers in Big Data</i> , 2018 , 1, 2	2.8	8
240	Impact of Variable RNA-Sequencing Depth on Gene Expression Signatures and Target Compound Robustness: Case Study Examining Brain Tumor (Glioma) Disease Progression. <i>JCO Precision Oncology</i> , 2018 , 2,	3.6	3
239	Inference of Genome-Scale Gene Regulatory Networks: Are There Differences in Biological and Clinical Validations?. <i>Machine Learning and Knowledge Extraction</i> , 2018 , 1, 138-148	3.1	2
238	Understanding the World Economy in Terms of Networks: A Survey of Data-Based Network Science Approaches on Economic Networks. <i>Frontiers in Applied Mathematics and Statistics</i> , 2018 , 4,	2.2	4
237	Multilayer Aggregation with Statistical Validation: Application to Investor Networks. <i>Scientific Reports</i> , 2018 , 8, 8198	4.9	19
236	GSAR: Bioconductor package for Gene Set analysis in R. <i>BMC Bioinformatics</i> , 2017 , 18, 61	3.6	22
235	MetrIntMeas a novel metric for measuring the intelligence of a swarm of cooperating agents. <i>Cognitive Systems Research</i> , 2017 , 45, 17-29	4.8	10
234	Highly unique network descriptors based on the roots of the permanental polynomial. <i>Information Sciences</i> , 2017 , 408, 176-181	7.7	13
233	sgnesR: An R package for simulating gene expression data from an underlying real gene network structure considering delay parameters. <i>BMC Bioinformatics</i> , 2017 , 18, 325	3.6	4
232	Extracting the Strongest Signals from Omics Data: Differentially Expressed Pathways and Beyond. <i>Methods in Molecular Biology</i> , 2017 , 1613, 125-159	1.4	1
231	Quantitative Graph Theory: A new branch of graph theory and network science. <i>Information Sciences</i> , 2017 , 418-419, 575-580	7.7	22
230	Toward Measuring Network Aesthetics Based on Symmetry. <i>Axioms</i> , 2017 , 6, 12	1.6	3
229	Lessons from the Human Genome Project: Modesty, Honesty, and Realism. <i>Frontiers in Genetics</i> , 2017 , 8, 184	4.5	5
228	Mathematical Modeling in Systems Biology. <i>Communications in Computer and Information Science</i> , 2017 , 161-166	0.3	
227	Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline. Briefings in Bioinformatics, 2016, 17, 393-407	13.4	37

226	Graph Entropy: Recent Results and Perspectives 2016 , 133-182		2
225	Graph Entropies in Texture Segmentation of Images 2016 , 203-231		1
224	Application of Graph Entropy for Knowledge Discovery and Data Mining in Bibliometric Data 2016 , 259-273	}	2
223	Fifty years of graph matching, network alignment and network comparison. <i>Information Sciences</i> , 2016 , 346-347, 180-197		112
222	A BRCA1 deficient, NFB driven immune signal predicts good outcome in triple negative breast cancer. <i>Oncotarget</i> , 2016 , 7, 19884-96		22
221	The Process of Analyzing Data is the Emergent Feature of Data Science. <i>Frontiers in Genetics</i> , 2016 , 7, 12		16
220	The Need for Formally Defining "Modern Medicine" by Means of Experimental Design. <i>Frontiers in Genetics</i> , 2016 , 7, 60		4
219	Against Dataism and for Data Sharing of Big Biomedical and Clinical Data with Research Parasites. Frontiers in Genetics, 2016 , 7, 154		8
218	samExploreR: exploring reproducibility and robustness of RNA-seq results based on SAM files. <i>Bioinformatics</i> , 2016 , 32, 3345-3347		7
217	Comparison of module detection algorithms in protein networks and investigation of the biological meaning of predicted modules. <i>BMC Bioinformatics</i> , 2016 , 17, 129		19
216	Inference and Analysis of Gene Regulatory Networks in R 2016 , 289-306		0
215	Using the DiffCorr Package to Analyze and Visualize Differential Correlations in Biological Networks 2016 , 1-34		3
214	Visualization of Biological Networks Using NetBioV 2016 , 307-333		1
213	Bayesian Computational Algorithms for Social Network Analysis 2016 , 63-82		
212	Threshold Degradation in R Using iDEMO 2016 , 83-124		2
211	Optimization of Stratified Sampling with the R Package SamplingStrata: Applications to Network Data 2016 , 125-150		
210	Exploring the Role of Small Molecules in Biological Systems Using Network Approaches 2016 , 151-172		
209	Performing Network Alignments with R 2016 , 173-200		

208	u-Penalized Mechods in High-Dimensional Gaussian Markov Random Fields 2016 , 201-265		1
207	Cluster Analysis of Social Networks Using R 2016 , 267-288		
206	Analytical Models and Methods for Anomaly Detection in Dynamic, Attributed Graphs 2016 , 35-61		
205	Computational cancer biology: education is a natural key to many locks. <i>BMC Cancer</i> , 2015 , 15, 7	4.8	6
204	Using shRNA experiments to validate gene regulatory networks. <i>Genomics Data</i> , 2015 , 4, 123-6		
203	Graph distance measures based on topological indices revisited. <i>Applied Mathematics and Computation</i> , 2015 , 266, 623-633	2.7	20
202	Urothelial cancer gene regulatory networks inferred from large-scale RNAseq, Bead and Oligo gene expression data. <i>BMC Systems Biology</i> , 2015 , 9, 21	3.5	7
201	Effects of subsampling on characteristics of RNA-seq data from triple-negative breast cancer patients. <i>Chinese Journal of Cancer</i> , 2015 , 34, 427-38		3
200	Entropy of Weighted Graphs with Randi©c Weights. <i>Entropy</i> , 2015 , 17, 3710-3723	2.8	23
199	Biological networks: the microscope of the twenty-first century?. Frontiers in Genetics, 2015, 6, 307	4.5	
198	Structural Analysis of Treatment Cycles Representing Transitions between Nursing Organizational Units Inferred from Diabetes. <i>PLoS ONE</i> , 2015 , 10, e0127152	3.7	
197	Discrimination Power of Polynomial-Based Descriptors for Graphs by Using Functional Matrices. <i>PLoS ONE</i> , 2015 , 10, e0139265	3.7	2
196	Comprehensive molecular pathology analysis of small bowel adenocarcinoma reveals novel targets with potential for clinical utility. <i>Oncotarget</i> , 2015 , 6, 20863-74	3.3	31
195	Gene Sets Net Correlations Analysis (GSNCA): a multivariate differential coexpression test for gene sets. <i>Bioinformatics</i> , 2014 , 30, 360-8	7.2	72
194	Functional and genetic analysis of the colon cancer network. <i>BMC Bioinformatics</i> , 2014 , 15 Suppl 6, S6	3.6	28
193	Inference and validation of predictive gene networks from biomedical literature and gene expression data. <i>Genomics</i> , 2014 , 103, 329-36	4.3	28
192	Report from the 2nd Summer School in Computational Biology organized by the Queen's University of Belfast. <i>Genomics Data</i> , 2014 , 2, 37-9		
191	NetBioV: an R package for visualizing large network data in biology and medicine. <i>Bioinformatics</i> , 2014 , 30, 2834-6	7.2	32

190	Structural differentiation of graphs using Hosoya-based indices. PLoS ONE, 2014, 9, e102459	3.7	18
189	Interrelations of graph distance measures based on topological indices. <i>PLoS ONE</i> , 2014 , 9, e94985	3.7	44
188	Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks. <i>Frontiers in Cell and Developmental Biology</i> , 2014 , 2, 38	5.7	86
187	The gene regulatory network for breast cancer: integrated regulatory landscape of cancer hallmarks. <i>Frontiers in Genetics</i> , 2014 , 5, 15	4.5	42
186	Enhancing our understanding of ways to analyze metagenomes. <i>Frontiers in Genetics</i> , 2014 , 5, 108	4.5	
185	Quantitative assessment and validation of network inference methods in bioinformatics. <i>Frontiers in Genetics</i> , 2014 , 5, 221	4.5	8
184	Comparative evaluation of gene set analysis approaches for RNA-Seq data. <i>BMC Bioinformatics</i> , 2014 , 15, 397	3.6	22
183	Untangling statistical and biological models to understand network inference: the need for a genomics network ontology. <i>Frontiers in Genetics</i> , 2014 , 5, 299	4.5	11
182	Entropy bounds for dendrimers. Applied Mathematics and Computation, 2014, 242, 462-472	2.7	42
181	Relevance of different prior knowledge sources for inferring gene interaction networks. <i>Frontiers in Genetics</i> , 2014 , 5, 177	4.5	5
180	Probabilistic inequalities for evaluating structural network measures. <i>Information Sciences</i> , 2014 , 288, 220-245	7.7	19
179	Netmes: assessing gene network inference algorithms by network-based measures. <i>Evolutionary Bioinformatics</i> , 2014 , 10, 1-9	1.9	3
178	A computational approach to construct a multivariate complete graph invariant. <i>Information Sciences</i> , 2014 , 260, 200-208	7.7	26
177	What Is Quantitative Graph Theory?. Discrete Mathematics and Its Applications, 2014, 1-33		5
176	Metros as Biological Systems: Complexity in Small Real-life Networks 2013 , 259-285		2
175	Three Types of Network Complexity Pyramid 2013 , 63-98		1
174	Information-Based Complexity of Networks 2013 , 209-227		
173	Thermodynamic Depth in Undirected and Directed Networks 2013 , 229-247		

172	Functional Complexity Based on Topology 2013 , 1-15		
171	Interfacing cellular networks of S. cerevisiae and E. coli: connecting dynamic and genetic information. <i>BMC Genomics</i> , 2013 , 14, 324	4.5	22
170	Collectives of diagnostic biomarkers identify high-risk subpopulations of hematuria patients: exploiting heterogeneity in large-scale biomarker data. <i>BMC Medicine</i> , 2013 , 11, 12	11.4	6
169	An efficient heuristic approach to detecting graph isomorphism based on combinations of highly discriminating invariants. <i>Advances in Computational Mathematics</i> , 2013 , 39, 311-325	1.6	18
168	Comparing Biological Networks: A Survey on Graph Classifying Techniques 2013 , 43-63		4
167	[COMMODE] a large-scale database of molecular descriptors using compounds from PubChem. <i>Source Code for Biology and Medicine</i> , 2013 , 8, 22	1.9	1
166	Kirchhoff's Matrix-Tree Theorem Revisited: Counting Spanning Trees with the Quantum Relative Entropy 2013 , 177-190		
165	Computational Complexity of Graphs 2013 , 99-153		1
164	The Linear Complexity of a Graph 2013 , 155-175		2
163	Dimension Measure for Complex Networks 2013 , 191-208		
162	Connections Between Artificial Intelligence and Computational Complexity and the Complexity of Graphs 2013 , 17-40		
161	Circumscribed Complexity in Ecological Networks 2013 , 249-258		1
160	Selection-Based Estimates of Complexity Unravel Some Mechanisms and Selective Pressures Underlying the Evolution of Complexity in Artificial Networks 2013 , 41-61		2
159	Learning Systems Biology: Conceptual Considerations toward a Web-Based Learning Platform. <i>Education Sciences</i> , 2013 , 3, 158-171	2.2	
158	Discriminant and Network Analysis to Study Origin of Cancer 2013 , 193-214		
157	Intervention and Control of Gene Regulatory Networks: Theoretical Framework and Application to Human Melanoma Gene Regulation 2013 , 215-238		
156	Colorectal Cancer and Its Molecular Subsystems: Construction, Interpretation, and Validation 2013 , 10	7-132	1

Semisupervised Methods for Analyzing High-dimensional Genomic Data **2013**, 93-106

154	Identification of Recurrent DNA Copy Number Aberrations in Tumors 2013 , 239-260		
153	The Cancer Cell, Its Entropy, and High-Dimensional Molecular Data 2013 , 261-285		
152	Control of Type I Error Rates for Oncology Biomarker Discovery with High-Throughput Platforms 2013 , 1-26		
151	Overview of Public Cancer Databases, Resources, and Visualization Tools 2013 , 27-40		
150	Discovery of Expression Signatures in Chronic Myeloid Leukemia by Bayesian Model Averaging 2013 , 41-55		
149	Bayesian Ranking and Selection Methods in Microarray Studies 2013 , 57-74		
148	Multiclass Classification via Bayesian Variable Selection with Gene Expression Data 2013 , 75-92		
147	Network Medicine: Disease Genes in Molecular Networks 2013 , 133-151		
146	Inference of Gene Regulatory Networks in Breast and Ovarian Cancer by Integrating Different Genomic Data 2013 , 153-171		
145	Network-Module-Based Approaches in Cancer Data Analysis 2013 , 173-192		
145	Network-Module-Based Approaches in Cancer Data Analysis 2013 , 173-192 Ensuring the statistical soundness of competitive gene set approaches: gene filtering and genome-scale coverage are essential. <i>Nucleic Acids Research</i> , 2013 , 41, e82	20.1	21
	Ensuring the statistical soundness of competitive gene set approaches: gene filtering and	20.1	21
144	Ensuring the statistical soundness of competitive gene set approaches: gene filtering and genome-scale coverage are essential. <i>Nucleic Acids Research</i> , 2013 , 41, e82 Network nursing: connections between nursing and complex network science. <i>International Journal</i>		21 5 22
144	Ensuring the statistical soundness of competitive gene set approaches: gene filtering and genome-scale coverage are essential. <i>Nucleic Acids Research</i> , 2013 , 41, e82 Network nursing: connections between nursing and complex network science. <i>International Journal of Nursing Knowledge</i> , 2013 , 24, 150-6		5
144 143 142	Ensuring the statistical soundness of competitive gene set approaches: gene filtering and genome-scale coverage are essential. <i>Nucleic Acids Research</i> , 2013 , 41, e82 Network nursing: connections between nursing and complex network science. <i>International Journal of Nursing Knowledge</i> , 2013 , 24, 150-6 The human disease network. <i>Systems Biomedicine (Austin, Tex.)</i> , 2013 , 1, 20-28 Structural properties and complexity of a new network class: Collatz step graphs. <i>PLos ONE</i> , 2013 ,	1.1	5
144 143 142	Ensuring the statistical soundness of competitive gene set approaches: gene filtering and genome-scale coverage are essential. <i>Nucleic Acids Research</i> , 2013 , 41, e82 Network nursing: connections between nursing and complex network science. <i>International Journal of Nursing Knowledge</i> , 2013 , 24, 150-6 The human disease network. <i>Systems Biomedicine (Austin, Tex)</i> , 2013 , 1, 20-28 Structural properties and complexity of a new network class: Collatz step graphs. <i>PLoS ONE</i> , 2013 , 8, e56461 Enhancing systems medicine beyond genotype data by dynamic patient signatures: having	1.1 3·7	5 22 3
144 143 142 141	Ensuring the statistical soundness of competitive gene set approaches: gene filtering and genome-scale coverage are essential. <i>Nucleic Acids Research</i> , 2013 , 41, e82 Network nursing: connections between nursing and complex network science. <i>International Journal of Nursing Knowledge</i> , 2013 , 24, 150-6 The human disease network. <i>Systems Biomedicine (Austin, Tex)</i> , 2013 , 1, 20-28 Structural properties and complexity of a new network class: Collatz step graphs. <i>PLoS ONE</i> , 2013 , 8, e56461 Enhancing systems medicine beyond genotype data by dynamic patient signatures: having information and using it too. <i>Frontiers in Genetics</i> , 2013 , 4, 241 B-cell lymphoma gene regulatory networks: biological consistency among inference methods.	3.7 4.5	5 22 3 4

136	Influence of the experimental design of gene expression studies on the inference of gene regulatory networks: environmental factors. <i>PeerJ</i> , 2013 , 1, e10	3.1	8
135	Detecting sequence dependent transcriptional pauses from RNA and protein number time series. <i>BMC Bioinformatics</i> , 2012 , 13, 152	3.6	
134	Harnessing the complexity of gene expression data from cancer: from single gene to structural pathway methods. <i>Biology Direct</i> , 2012 , 7, 44	7.2	19
133	Organizational structure and the periphery of the gene regulatory network in B-cell lymphoma. <i>BMC Systems Biology</i> , 2012 , 6, 38	3.5	18
132	Universal construction mechanism for networks from one-dimensional symbol sequences. <i>Applied Mathematics and Computation</i> , 2012 , 219, 1020-1030	2.7	2
131	Bagging statistical network inference from large-scale gene expression data. <i>PLoS ONE</i> , 2012 , 7, e33624	1 3.7	79
130	Exploring statistical and population aspects of network complexity. <i>PLoS ONE</i> , 2012 , 7, e34523	3.7	25
129	Limitations of gene duplication models: evolution of modules in protein interaction networks. <i>PLoS ONE</i> , 2012 , 7, e35531	3.7	5
128	Standardization of diagnostic biomarker concentrations in urine: the hematuria caveat. <i>PLoS ONE</i> , 2012 , 7, e53354	3.7	21
127	Statistical inference and reverse engineering of gene regulatory networks from observational expression data. <i>Frontiers in Genetics</i> , 2012 , 3, 8	4.5	89
126	Evolutionary dynamics of the spatial Prisoner Dilemma with self-inhibition. <i>Applied Mathematics and Computation</i> , 2012 , 218, 6482-6488	2.7	2
125	Personalized medicine: Has it started yet? A reconstruction of the early history. <i>Frontiers in Genetics</i> , 2012 , 3, 313	4.5	15
124	Gene set analysis for self-contained tests: complex null and specific alternative hypotheses. <i>Bioinformatics</i> , 2012 , 28, 3073-80	7.2	14
123	A Bayesian analysis of the chromosome architecture of human disorders by integrating reductionist data. <i>Scientific Reports</i> , 2012 , 2, 513	4.9	
122	Assessment method for a power analysis to identify differentially expressed pathways. <i>PLoS ONE</i> , 2012 , 7, e37510	3.7	16
121	Network-Based Methods for Computational Diagnostics by Means of R 2012 , 185-197		2
120	What if the Fit is Unfit? Criteria for Biological Systems Estimation beyond Residual Errors 2011 , 181-200		2
119	Connections between classical and parametric network entropies. <i>PLoS ONE</i> , 2011 , 6, e15733	3.7	21

118	Parametric construction of episode networks from pseudoperiodic time series based on mutual information. <i>PLoS ONE</i> , 2011 , 6, e27733	3.7	5
117	Network Analysis to Interpret Complex Phenotypes 2011 , 1-12		1
116	Network Screening: A New Method to Identify Active Networks from an Ensemble of Known Networks 2011 , 281-298		
115	Protein Network Analysis for Disease Gene Identification and Prioritization 2011 , 405-413		
114	Modeling Expression Quantitative Trait Loci in Multiple Populations 2011 , 39-65		
113	Elucidation of General and Condition-Dependent Gene Pathways Using Mixture Models and Bayesian Networks 2011 , 91-103		1
112	Multiscale Network Reconstruction from Gene Expression Measurements: Correlations, Perturbations, and A Priori Biological Knowledge 2011 , 105-131		
111	Gene Regulatory Networks Inference: Combining a Genetic Programming and HIFiltering Approach 2011 , 133-153		2
110	Computational Reconstruction of Protein Interaction Networks 2011 , 155-180		
109	Transcriptional Network Inference Based on Information Theory 2011 , 67-89		2
108	Representing Cancer Cell Trajectories in a Phase-Space Diagram: Switching Cellular States by Biological Phase Transitions 2011 , 377-403		3
107	On Some Inverse Problems in Generating Probabilistic Boolean Networks 2011 , 329-348		
106	Boolean Analysis of Gene Expression Datasets 2011 , 349-375		
105	Networks for systems biology: conceptual connection of data and function. <i>IET Systems Biology</i> , 2011 , 5, 185-207	1.4	93
104	Structural measures for network biology using QuACN. BMC Bioinformatics, 2011, 12, 492	3.6	16
103	Pathways and Networks as Functional Descriptors for Human Disease and Drug Response Endpoints 2011 , 415-442		2
102	Structural influence of gene networks on their inference: analysis of C3NET. <i>Biology Direct</i> , 2011 , 6, 31	7.2	45
101	Network biology: a direct approach to study biological function. <i>Wiley Interdisciplinary Reviews:</i> Systems Biology and Medicine, 2011 , 3, 379-91	6.6	42

100 Stochastic Modeling of Gene Regulatory Networks **2011**, 13-37

99	Correlation Network Analysis and Knowledge Integration 2011 , 251-280		2
98	Machine Learning Methods for Identifying Essential Genes and Proteins in Networks 2011 , 201-214		
97	Gene Coexpression Networks for the Analysis of DNA Microarray Data 2011 , 215-250		31
96	Community Detection in Biological Networks 2011 , 299-327		1
95	Pathway analysis of expression data: deciphering functional building blocks of complex diseases. <i>PLoS Computational Biology</i> , 2011 , 7, e1002053	5	79
94	Influence of statistical estimators of mutual information and data heterogeneity on the inference of gene regulatory networks. <i>PLoS ONE</i> , 2011 , 6, e29279	3.7	20
93	Large-Scale Statistical Inference of Gene Regulatory Networks: Local Network-Based Measures. Intelligent Systems Reference Library, 2011 , 179-193	0.8	
92	A Brief Introduction to Complex Networks and Their Analysis 2011 , 1-26		2
91	Statistic complexity: combining kolmogorov complexity with an ensemble approach. <i>PLoS ONE</i> , 2010 , 5, e12256	3.7	12
90	Influence of the time scale on the construction of financial networks. <i>PLoS ONE</i> , 2010 , 5, e12884	3.7	24
89	Revealing differences in gene network inference algorithms on the network level by ensemble methods. <i>Bioinformatics</i> , 2010 , 26, 1738-44	7.2	76
88	Exploratory analysis of spatiotemporal patterns of cellular automata by clustering compressibility. <i>Physical Review E</i> , 2010 , 81, 026103	2.4	8
87	Making Mountains out of Molehills: Moving from Single Gene to Pathway Based Models of Colon Cancer Progression 2010 , 73-87		
86	Multivariate Analysis of Microarray Data Using Hotelling's T2 Test 2010 , 113-130		
85	Gene-Set Expression Analysis: Challenges and Tools 2010 , 89-112		
84	Interpreting Differential Coexpression of Gene Sets 2010 , 131-150		
83	Multivariate Analysis of Microarray Data: Application of MANOVA 2010 , 151-166		

82	Testing Significance of a Class of Genes 2010 , 167-184		
81	Differential Dependency Network Analysis to Identify Topological Changes in Biological Networks 2010 , 185-203		
80	Predicting Cancer Survival Using Expression Patterns 2010 , 305-323		
79	An Introduction to Time-Varying Connectivity Estimation for Gene Regulatory Networks 2010 , 205-230		
78	A Systems Biology Approach to Construct a Cancer-Perturbed Protein Protein Interaction Network for Apoptosis by Means of Microarray and Database Mining 2010 , 231-251		
77	A New Gene Expression Meta-Analysis Technique and its Application to Co-Analyze Three Independent Lung Cancer Datasets 2010 , 253-277		
76	Model Averaging for Biological Networks with Prior Information 2010, 347-372		
75	Multiple Testing Methods 2010 , 45-72		1
74	Integration of Microarray Datasets 2010 , 325-345		
73	Kernel Classification Methods for Cancer Microarray Data 2010 , 279-303		1
72	Cancer Stem Cells IFinding and Capping the Roots of Cancer 2010, 25-43		1
71	Mining Graph Patterns in Web-based Systems: A Conceptual View. <i>Text, Speech and Language Technology</i> , 2010 , 237-253		
70	The Biology of MYC in Health and Disease: A High Altitude View 2010 , 1-24		
69	Local network-based measures to assess the inferability of different regulatory networks. <i>IET Systems Biology</i> , 2010 , 4, 277-88	1.4	25
68	Inferring the conservative causal core of gene regulatory networks. <i>BMC Systems Biology</i> , 2010 , 4, 132	3.5	132
67	Identifying critical financial networks of the DJIA: Toward a network-based index. <i>Complexity</i> , 2010 , 16, 24-33	1.6	20
66	Unite and conquer: univariate and multivariate approaches for finding differentially expressed gene sets. <i>Bioinformatics</i> , 2009 , 25, 2348-54	7.2	86
65	Information processing in the transcriptional regulatory network of yeast: functional robustness. <i>BMC Systems Biology</i> , 2009 , 3, 35	3.5	23

64	Hierarchical coordination of periodic genes in the cell cycle of Saccharomyces cerevisiae. <i>BMC Systems Biology</i> , 2009 , 3, 76	3.5	3
63	Fault tolerance of information processing in gene networks. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2009 , 388, 541-548	3.3	5
62	On entropy-based molecular descriptors: statistical analysis of real and synthetic chemical structures. <i>Journal of Chemical Information and Modeling</i> , 2009 , 49, 1655-63	6.1	73
61	Predicting cell cycle regulated genes by causal interactions. <i>PLoS ONE</i> , 2009 , 4, e6633	3.7	5
60	Towards a Partitioning of the Input Space of Boolean Networks: Variable Selection Using Bagging. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009 , 715-723	0.2	
59	Organizational Structure of the Transcriptional Regulatory Network of Yeast: Periodic Genes. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009, 140-148	0.2	
58	Towards Network Complexity. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering,</i> 2009 , 707-714	0.2	1
57	ROBUSTNESS IN SCALE-FREE NETWORKS: COMPARING DIRECTED AND UNDIRECTED NETWORKS. <i>International Journal of Modern Physics C</i> , 2008 , 19, 717-726	1.1	10
56	The Structural Information Content of Chemical Networks. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 2008 , 63, 155-158	1.4	7
55	A comparative analysis of multidimensional features of objects resembling sets of graphs. <i>Applied Mathematics and Computation</i> , 2008 , 196, 221-235	2.7	5
54	Structural information content of networks: graph entropy based on local vertex functionals. <i>Computational Biology and Chemistry</i> , 2008 , 32, 131-8	3.6	30
53	Entropy bounds for hierarchical molecular networks. <i>PLoS ONE</i> , 2008 , 3, e3079	3.7	33
52	The chronic fatigue syndrome: a comparative pathway analysis. <i>Journal of Computational Biology</i> , 2007 , 14, 961-72	1.7	68
51	Topological mappings between graphs, trees and generalized trees. <i>Applied Mathematics and Computation</i> , 2007 , 186, 1326-1333	2.7	10
50	Comparing large graphs efficiently by margins of feature vectors. <i>Applied Mathematics and Computation</i> , 2007 , 188, 1699-1710	2.7	16
49	Information theoretic measures of UHG graphs with low computational complexity. <i>Applied Mathematics and Computation</i> , 2007 , 190, 1783-1794	2.7	25
48	Structural similarity of directed universal hierarchical graphs: A low computational complexity approach. <i>Applied Mathematics and Computation</i> , 2007 , 194, 7-20	2.7	7
47	A topological algorithm for identification of structural domains of proteins. <i>BMC Bioinformatics</i> , 2007 , 8, 237	3.6	18

46	NONLINEAR TIME SERIES PREDICTION BASED ON A POWER-LAW NOISE MODEL. <i>International Journal of Modern Physics C</i> , 2007 , 18, 1839-1852	1.1	4
45	Harnessing naturally randomized transcription to infer regulatory relationships among genes. <i>Genome Biology</i> , 2007 , 8, R219	18.3	83
44	Optimization Procedure for Predicting Nonlinear Time Series Based on a Non-Gaussian Noise Model 2007 , 540-549		
43	Influence of the neural network topology on the learning dynamics. <i>Neurocomputing</i> , 2006 , 69, 1179-1	1832.4	6
42	A HETEROSYNAPTIC LEARNING RULE FOR NEURAL NETWORKS. <i>International Journal of Modern Physics C</i> , 2006 , 17, 1501-1520	1.1	7
41	Algorithmic computation of knot polynomials of secondary structure elements of proteins. <i>Journal of Computational Biology</i> , 2006 , 13, 1503-12	1.7	11
40	A similarity measure for graphs with low computational complexity. <i>Applied Mathematics and Computation</i> , 2006 , 182, 447-459	2.7	34
39	A Novel Stochastic Learning Rule for Neural Networks. <i>Lecture Notes in Computer Science</i> , 2006 , 414-42	2 3 0.9	
38	STOCHASTIC SZNAJD MODEL IN OPEN COMMUNITY. <i>International Journal of Modern Physics C</i> , 2005 , 16, 1693-1699	1.1	1
37	A Neurobiologically Motivated Model for Self-organized Learning. <i>Lecture Notes in Computer Science</i> , 2005 , 415-424	0.9	
36	A constrained HMM-based approach to the estimation of perceptual switching dynamics in pigeons. <i>Neurocomputing</i> , 2001 , 38-40, 1495-1501	5.4	3
35	Extracting the dynamics of perceptual switching from 'noisy' behaviour: an application of hidden Markov modelling to pecking data from pigeons. <i>Journal of Physiology (Paris)</i> , 2000 , 94, 555-67		6
34	Statistical Mechanics of Complex Networks23-45		2
33	Entropy, Orbits, and Spectra of Graphs1-22		7
32	A Simple Integrated Approach to Network Complexity and Node Centrality47-53		1
31	Spectral Theory of Networks: From Biomolecular to Ecological Systems55-83		O
30	On the Structure of Neutral Networks of RNA Pseudoknot Structures85-112		
29	Graph Edit Distance IDptimal and Suboptimal Algorithms with Applications113-143		4

28	Graph Energy145-174	31
27	Generalized Shortest Path Trees: A Novel Graph Class by Example of Semiotic Networks175-220	7
26	Applications of Graph Theory in Chemo- and Bioinformatics221-243	
25	Structural and Functional Dynamics in Cortical and Neuronal Networks245-269	
24	Network Mapping of Metabolic Pathways271-293	
23	Graph Structure Analysis and Computational Tractability of Scheduling Problems295-322	
22	Complexity of Phylogenetic Networks: Counting Cubes in Median Graphs and Related Problems323-350	2
21	Elementary Elliptic (R, q)-Polycycles351-376	
20	Optimal Dynamic Flows in Networks and Algorithms for Finding Them377-400	
19	Analyzing and Modeling European R&D Collaborations: Challenges and Opportunities from a Large Social Network401-423	2
18	Analytic Combinatorics on Random Graphs425-450	
17	Reverse Engineering Gene Regulatory Networks with Various Machine Learning Methods101-142	5
16	Introduction to DNA Microarrays1-26	4
15	Structural Equation for Identification of Genetic Networks243-283	
14	Statistical Methods for Inference of Genetic Networks and Regulatory Modules143-167	1
13	Detecting Pathological Pathways of a Complex Disease by a Comparative Analysis of Networks285-305	
12	Computational Reconstruction of Transcriptional Regulatory Modules of the Yeast Cell Cycle331-354	0
11	Finding Verified Edges in Genetic/Gene Networks: Bilayer Verification for Network Recovery in the Presence of Hidden Confounders51-81	

LIST OF PUBLICATIONS

10 Pathway-Based Methods for Analyzing Microarray Data355-384

9	Predicting Functional Modules Using Microarray and Protein Interaction Data307-329		
8	A Model of Genetic Networks with Delayed Stochastic Dynamics169-204		1
7	Computational Inference of Biological Causal Networks [Analysis of Therapeutic Compound Effects83-99		
6	Comparative Analysis of Clustering Methods for Microarray Data27-50		2
5	Probabilistic Boolean Networks as Models for Gene Regulation205-242		1
4	Frontiers in Data Science		3
3	Influence of Statistical Estimators on the Large-Scale Causal Inference of Regulatory Networks131-152		1
2	The Most Probable Genetic Interaction Networks Inferred from Gene Expression Patterns385-412		
1	Taxonomy of machine learning paradigms: A data-centric perspective. Wiley Interdisciplinary 6.5	9	O