Frank Emmert-Streib

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7537684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Introductory Review of Deep Learning for Prediction Models With Big Data. Frontiers in Artificial Intelligence, 2020, 3, 4.	3.4	316
2	Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks. Frontiers in Cell and Developmental Biology, 2014, 2, 38.	3.7	201
3	A review of connectivity map and computational approaches in pharmacogenomics. Briefings in Bioinformatics, 2018, 19, bbw112.	6.5	182
4	Inferring the conservative causal core of gene regulatory networks. BMC Systems Biology, 2010, 4, 132.	3.0	167
5	Fifty years of graph matching, network alignment and network comparison. Information Sciences, 2016, 346-347, 180-197.	6.9	158
6	Bagging Statistical Network Inference from Large-Scale Gene Expression Data. PLoS ONE, 2012, 7, e33624.	2.5	122
7	Statistical Inference and Reverse Engineering of Gene Regulatory Networks from Observational Expression Data. Frontiers in Genetics, 2012, 3, 8.	2.3	116
8	Harnessing naturally randomized transcription to infer regulatory relationships among genes. Genome Biology, 2007, 8, R219.	9.6	109
9	Networks for systems biology: conceptual connection of data and function. IET Systems Biology, 2011, 5, 185-207.	1.5	105
10	Pathway Analysis of Expression Data: Deciphering Functional Building Blocks of Complex Diseases. PLoS Computational Biology, 2011, 7, e1002053.	3.2	101
11	Gene Sets Net Correlations Analysis (GSNCA): a multivariate differential coexpression test for gene sets. Bioinformatics, 2014, 30, 360-368.	4.1	101
12	Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial intelligence. Information Fusion, 2022, 79, 263-278.	19.1	100
13	Unite and conquer: univariate and multivariate approaches for finding differentially expressed gene sets. Bioinformatics, 2009, 25, 2348-2354.	4.1	98
14	Revealing differences in gene network inference algorithms on the network level by ensemble methods. Bioinformatics, 2010, 26, 1738-1744.	4.1	90
15	On Entropy-Based Molecular Descriptors: Statistical Analysis of Real and Synthetic Chemical Structures. Journal of Chemical Information and Modeling, 2009, 49, 1655-1663.	5.4	86
16	Named Entity Recognition and Relation Detection for Biomedical Information Extraction. Frontiers in Cell and Developmental Biology, 2020, 8, 673.	3.7	78
17	The Chronic Fatigue Syndrome: A Comparative Pathway Analysis. Journal of Computational Biology, 2007, 14, 961-972.	1.6	77
18	The gene regulatory network for breast cancer: integrated regulatory landscape of cancer hallmarks. Frontiers in Genetics, 2014, 5, 15.	2.3	74

#	Article	IF	CITATIONS
19	High-Dimensional LASSO-Based Computational Regression Models: Regularization, Shrinkage, and Selection. Machine Learning and Knowledge Extraction, 2019, 1, 359-383.	5.0	67
20	Evaluation of Regression Models: Model Assessment, Model Selection and Generalization Error. Machine Learning and Knowledge Extraction, 2019, 1, 521-551.	5.0	59
21	Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline. Briefings in Bioinformatics, 2016, 17, 393-407.	6.5	57
22	Network biology: a direct approach to study biological function. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 379-391.	6.6	53
23	Introduction to Survival Analysis in Practice. Machine Learning and Knowledge Extraction, 2019, 1, 1013-1038.	5.0	53
24	Structural influence of gene networks on their inference: analysis of C3NET. Biology Direct, 2011, 6, 31.	4.6	51
25	2-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)benzonitrile as novel inhibitor of receptor tyrosine kinase and PI3K/AKT/mTOR signaling pathway in glioblastoma. European Journal of Medicinal Chemistry, 2019, 166, 291-303.	5.5	50
26	Interrelations of Graph Distance Measures Based on Topological Indices. PLoS ONE, 2014, 9, e94985.	2.5	49
27	Explainable artificial intelligence and machine learning: A reality rooted perspective. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2020, 10, e1368.	6.8	49
28	Entropy bounds for dendrimers. Applied Mathematics and Computation, 2014, 242, 462-472.	2.2	46
29	Quantitative Graph Theory: A new branch of graph theory and network science. Information Sciences, 2017, 418-419, 575-580.	6.9	46
30	NetBioV: an R package for visualizing large network data in biology and medicine. Bioinformatics, 2014, 30, 2834-2836.	4.1	44
31	A similarity measure for graphs with low computational complexity. Applied Mathematics and Computation, 2006, 182, 447-459.	2.2	42
32	Alkylaminophenol Induces G1/S Phase Cell Cycle Arrest in Glioblastoma Cells Through p53 and Cyclin-Dependent Kinase Signaling Pathway. Frontiers in Pharmacology, 2019, 10, 330.	3.5	42
33	Comprehensive molecular pathology analysis of small bowel adenocarcinoma reveals novel targets with potential for clinical utility. Oncotarget, 2015, 6, 20863-20874.	1.8	41
34	Inference and validation of predictive gene networks from biomedical literature and gene expression data. Genomics, 2014, 103, 329-336.	2.9	40
35	A comprehensive survey of error measures for evaluating binary decision making in data science. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2019, 9, e1303.	6.8	40
36	Robustness of differential gene expression analysis of RNA-seq. Computational and Structural Biotechnology Journal, 2021, 19, 3470-3481.	4.1	39

#	Article	IF	CITATIONS
37	The human disease network. Systems Biomedicine (Austin, Tex), 2013, 1, 20-28.	0.7	38
38	Understanding Statistical Hypothesis Testing: The Logic of Statistical Inference. Machine Learning and Knowledge Extraction, 2019, 1, 945-961.	5.0	38
39	GSAR: Bioconductor package for Gene Set analysis in R. BMC Bioinformatics, 2017, 18, 61.	2.6	37
40	Combining deep learning with token selection for patient phenotyping from electronic health records. Scientific Reports, 2020, 10, 1432.	3.3	36
41	Structural information content of networks: Graph entropy based on local vertex functionals. Computational Biology and Chemistry, 2008, 32, 131-138.	2.3	35
42	A data-centric review of deep transfer learning with applications to text data. Information Sciences, 2022, 585, 498-528.	6.9	35
43	Entropy Bounds for Hierarchical Molecular Networks. PLoS ONE, 2008, 3, e3079.	2.5	34
44	Functional and genetic analysis of the colon cancer network. BMC Bioinformatics, 2014, 15, S6.	2.6	33
45	Multilayer Aggregation with Statistical Validation: Application to Investor Networks. Scientific Reports, 2018, 8, 8198.	3.3	33
46	A Machine Learning Perspective on Personalized Medicine: An Automized, Comprehensive Knowledge Base with Ontology for Pattern Recognition. Machine Learning and Knowledge Extraction, 2018, 1, 149-156.	5.0	32
47	A BRCA1 deficient, NFκB driven immune signal predicts good outcome in triple negative breast cancer. Oncotarget, 2016, 7, 19884-19896.	1.8	30
48	Exploring Statistical and Population Aspects of Network Complexity. PLoS ONE, 2012, 7, e34523.	2.5	29
49	A computational approach to construct a multivariate complete graph invariant. Information Sciences, 2014, 260, 200-208.	6.9	29
50	Information theoretic measures of UHG graphs with low computational complexity. Applied Mathematics and Computation, 2007, 190, 1783-1794.	2.2	28
51	Comparison of module detection algorithms in protein networks and investigation of the biological meaning of predicted modules. BMC Bioinformatics, 2016, 17, 129.	2.6	28
52	Local network-based measures to assess the inferability of different regulatory networks. IET Systems Biology, 2010, 4, 277-288.	1.5	27
53	Influence of the Time Scale on the Construction of Financial Networks. PLoS ONE, 2010, 5, e12884.	2.5	27
54	Interfacing cellular networks of S. cerevisiae and E. coli: Connecting dynamic and genetic information. BMC Genomics, 2013, 14, 324.	2.8	27

#	Article	IF	CITATIONS
55	Entropy of Weighted Graphs with Randi´c Weights. Entropy, 2015, 17, 3710-3723.	2.2	27
56	Artificial Intelligence: A Clarification of Misconceptions, Myths and Desired Status. Frontiers in Artificial Intelligence, 2020, 3, 524339.	3.4	27
5 7	Prognostic gene expression signatures of breast cancer are lacking a sensible biological meaning. Scientific Reports, 2021, 11, 156.	3.3	26
58	Influence of Statistical Estimators of Mutual Information and Data Heterogeneity on the Inference of Gene Regulatory Networks. PLoS ONE, 2011, 6, e29279.	2.5	26
59	Information processing in the transcriptional regulatory network of yeast: Functional robustness. BMC Systems Biology, 2009, 3, 35.	3.0	25
60	Identifying critical financial networks of the DJIA: Toward a networkâ€based index. Complexity, 2010, 16, 24-33.	1.6	25
61	Comparative evaluation of gene set analysis approaches for RNA-Seq data. BMC Bioinformatics, 2014, 15, 397.	2.6	25
62	Comparing deep belief networks with support vector machines for classifying gene expression data from complex disorders. FEBS Open Bio, 2019, 9, 1232-1248.	2.3	25
63	A novel epidemic model considering demographics and intercity commuting on complex dynamical networks. Applied Mathematics and Computation, 2020, 386, 125517.	2.2	25
64	Ensuring the statistical soundness of competitive gene set approaches: gene filtering and genome-scale coverage are essential. Nucleic Acids Research, 2013, 41, e82-e82.	14.5	24
65	Connections between Classical and Parametric Network Entropies. PLoS ONE, 2011, 6, e15733.	2.5	23
66	Harnessing the complexity of gene expression data from cancer: from single gene to structural pathway methods. Biology Direct, 2012, 7, 44.	4.6	23
67	Probabilistic inequalities for evaluating structural network measures. Information Sciences, 2014, 288, 220-245.	6.9	23
68	Graph distance measures based on topological indices revisited. Applied Mathematics and Computation, 2015, 266, 623-633.	2.2	23
69	Defining Data Science by a Data-Driven Quantification of the Community. Machine Learning and Knowledge Extraction, 2018, 1, 235-251.	5.0	23
70	Glioblastoma Multiforme Stem Cell Cycle Arrest by Alkylaminophenol through the Modulation of EGFR and CSC Signaling Pathways. Cells, 2020, 9, 681.	4.1	23
71	Organizational structure and the periphery of the gene regulatory network in B-cell lymphoma. BMC Systems Biology, 2012, 6, 38.	3.0	22
72	Standardization of Diagnostic Biomarker Concentrations in Urine: The Hematuria Caveat. PLoS ONE, 2012, 7, e53354.	2.5	22

#	Article	IF	CITATIONS
73	An efficient heuristic approach to detecting graph isomorphism based on combinations of highly discriminating invariants. Advances in Computational Mathematics, 2013, 39, 311-325.	1.6	22
74	B-cell lymphoma gene regulatory networks: biological consistency among inference methods. Frontiers in Genetics, 2013, 4, 281.	2.3	21
75	The Process of Analyzing Data is the Emergent Feature of Data Science. Frontiers in Genetics, 2016, 7, 12.	2.3	21
76	A topological algorithm for identification of structural domains of proteins. BMC Bioinformatics, 2007, 8, 237.	2.6	20
77	Structural Differentiation of Graphs Using Hosoya-Based Indices. PLoS ONE, 2014, 9, e102459.	2.5	19
78	Graph-based exploitation of gene ontology using GOxploreR for scrutinizing biological significance. Scientific Reports, 2020, 10, 16672.	3.3	19
79	Quantitative Network Measures as Biomarkers for Classifying Prostate Cancer Disease States: A Systems Approach to Diagnostic Biomarkers. PLoS ONE, 2013, 8, e77602.	2.5	18
80	Comparing large graphs efficiently by margins of feature vectors. Applied Mathematics and Computation, 2007, 188, 1699-1710.	2.2	17
81	Structural Measures for Network Biology Using QuACN. BMC Bioinformatics, 2011, 12, 492.	2.6	17
82	Gene set analysis for self-contained tests: complex null and specific alternative hypotheses. Bioinformatics, 2012, 28, 3073-3080.	4.1	17
83	Personalized medicine: Has it started yet? A reconstruction of the early history. Frontiers in Genetics, 2012, 3, 313.	2.3	17
84	Ensuring the Robustness and Reliability of Data-Driven Knowledge Discovery Models in Production and Manufacturing. Frontiers in Artificial Intelligence, 2021, 4, 576892.	3.4	17
85	Hosoya entropy of fullerene graphs. Applied Mathematics and Computation, 2019, 352, 88-98.	2.2	16
86	Assessment Method for a Power Analysis to Identify Differentially Expressed Pathways. PLoS ONE, 2012, 7, e37510.	2.5	16
87	Statistic Complexity: Combining Kolmogorov Complexity with an Ensemble Approach. PLoS ONE, 2010, 5, e12256.	2.5	15
88	Untangling statistical and biological models to understand network inference: the need for a genomics network ontology. Frontiers in Genetics, 2014, 5, 299.	2.3	15
89	Entropy, Orbits, and Spectra of Graphs. , 0, , 1-22.		14
90	Highly unique network descriptors based on the roots of the permanental polynomial. Information Sciences, 2017, 408, 176-181.	6.9	14

#	Article	IF	CITATIONS
91	The Hosoya Entropy of Graphs Revisited. Symmetry, 2019, 11, 1013.	2.2	14
92	Comparing biological information contained in mRNA and non-coding RNAs for classification of lung cancer patients. BMC Cancer, 2019, 19, 1176.	2.6	14
93	Algorithmic Computation of Knot Polynomials of Secondary Structure Elements of Proteins. Journal of Computational Biology, 2006, 13, 1503-1512.	1.6	13
94	ROBUSTNESS IN SCALE-FREE NETWORKS: COMPARING DIRECTED AND UNDIRECTED NETWORKS. International Journal of Modern Physics C, 2008, 19, 717-726.	1.7	13
95	On Properties of Distance-Based Entropies on Fullerene Graphs. Entropy, 2019, 21, 482.	2.2	13
96	Computational analysis of structural properties of economic and financial networks. Journal of Network Theory in Finance, 2018, , 1-32.	0.7	13
97	Topological mappings between graphs, trees and generalized trees. Applied Mathematics and Computation, 2007, 186, 1326-1333.	2.2	12
98	MetrIntMeas a novel metric for measuring the intelligence of a swarm of cooperating agents. Cognitive Systems Research, 2017, 45, 17-29.	2.7	12
99	L1000 Viewer: A Search Engine and Web Interface for the LINCS Data Repository. Frontiers in Genetics, 2019, 10, 557.	2.3	12
100	Prostate Cancer Gene Regulatory Network Inferred from RNA-Seq Data. Current Genomics, 2019, 20, 38-48.	1.6	12
101	The Orbit-Polynomial: A Novel Measure of Symmetry in Networks. IEEE Access, 2020, 8, 36100-36112.	4.2	12
102	From the Digital Data Revolution toward a Digital Society: Pervasiveness of Artificial Intelligence. Machine Learning and Knowledge Extraction, 2021, 3, 284-298.	5.0	12
103	Large-Scale Evaluation of Molecular Descriptors by Means of Clustering. PLoS ONE, 2013, 8, e83956.	2.5	12
104	Urothelial cancer gene regulatory networks inferred from large-scale RNAseq, Bead and Oligo gene expression data. BMC Systems Biology, 2015, 9, 21.	3.0	11
105	samExploreR: exploring reproducibility and robustness of RNA-seq results based on SAM files. Bioinformatics, 2016, 32, 3345-3347.	4.1	11
106	Comparison of Text Mining Models for Food and Dietary Constituent Named-Entity Recognition. Machine Learning and Knowledge Extraction, 2022, 4, 254-275.	5.0	11
107	Collectives of diagnostic biomarkers identify high-risk subpopulations of hematuria patients: exploiting heterogeneity in large-scale biomarker data. BMC Medicine, 2013, 11, 12.	5.5	10
108	Data Analytics Applications for Streaming Data From Social Media: What to Predict?. Frontiers in Big Data, 2018, 1, 2.	2.9	10

#	Article	IF	CITATIONS
109	Systems Pharmacogenomic Landscape of Drug Similarities from LINCS data: Drug Association Networks. Scientific Reports, 2019, 9, 7849.	3.3	10
110	Utilizing Social Media Data for Psychoanalysis to Study Human Personality. Frontiers in Psychology, 2019, 10, 2596.	2.1	10
111	Properties of Entropy-Based Topological Measures of Fullerenes. Mathematics, 2020, 8, 740.	2.2	10
112	A HETEROSYNAPTIC LEARNING RULE FOR NEURAL NETWORKS. International Journal of Modern Physics C, 2006, 17, 1501-1520.	1.7	9
113	Computational cancer biology: education is a natural key to many locks. BMC Cancer, 2015, 15, 7.	2.6	9
114	Against Dataism and for Data Sharing of Big Biomedical and Clinical Data with Research Parasites. Frontiers in Genetics, 2016, 7, 154.	2.3	9
115	sgnesR: An R package for simulating gene expression data from an underlying real gene network structure considering delay parameters. BMC Bioinformatics, 2017, 18, 325.	2.6	9
116	Harnessing the biological complexity of Big Data from LINCS gene expression signatures. PLoS ONE, 2018, 13, e0201937.	2.5	9
117	On graph entropy measures based on the number of independent sets and matchings. Information Sciences, 2020, 516, 491-504.	6.9	9
118	The Role of Symmetry in the Aesthetics of Residential Building Façades Using Cognitive Science Methods. Symmetry, 2020, 12, 1438.	2.2	9
119	Distributed Event-Triggered Circular Formation Control for Multiple Anonymous Mobile Robots With Order Preservation and Obstacle Avoidance. IEEE Access, 2020, 8, 167288-167299.	4.2	9
120	Influence of the experimental design of gene expression studies on the inference of gene regulatory networks: environmental factors. PeerJ, 2013, 1, e10.	2.0	9
121	Taxonomy of machine learning paradigms: A dataâ€centric perspective. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2022, 12, .	6.8	9
122	Extracting the dynamics of perceptual switching from â€~noisy' behaviour: An application of hidden Markov modelling to pecking data from pigeons. Journal of Physiology (Paris), 2000, 94, 555-567.	2.1	8
123	Influence of the neural network topology on the learning dynamics. Neurocomputing, 2006, 69, 1179-1182.	5.9	8
124	The Structural Information Content of Chemical Networks. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2008, 63, 155-158.	1.5	8
125	Exploratory analysis of spatiotemporal patterns of cellular automata by clustering compressibility. Physical Review E, 2010, 81, 026103.	2.1	8
126	Quantitative assessment and validation of network inference methods in bioinformatics. Frontiers in Genetics, 2014, 5, 221.	2.3	8

#	Article	IF	CITATIONS
127	Large-Scale Simultaneous Inference with Hypothesis Testing: Multiple Testing Procedures in Practice. Machine Learning and Knowledge Extraction, 2019, 1, 653-683.	5.0	8
128	The usefulness of topological indices. Information Sciences, 2022, 606, 143-151.	6.9	8
129	Structural similarity of directed universal hierarchical graphs: A low computational complexity approach. Applied Mathematics and Computation, 2007, 194, 7-20.	2.2	7
130	Fault tolerance of information processing in gene networks. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 541-548.	2.6	7
131	Relevance of different prior knowledge sources for inferring gene interaction networks. Frontiers in Genetics, 2014, 5, 177.	2.3	7
132	Lessons from the Human Genome Project: Modesty, Honesty, and Realism. Frontiers in Genetics, 2017, 8, 184.	2.3	7
133	Understanding the World Economy in Terms of Networks: A Survey of Data-Based Network Science Approaches on Economic Networks. Frontiers in Applied Mathematics and Statistics, 2018, 4, .	1.3	7
134	Graph entropy based on the number of spanning forests of c-cyclic graphs. Applied Mathematics and Computation, 2019, 363, 124616.	2.2	7
135	Measuring the complexity of directed graphs: A polynomial-based approach. PLoS ONE, 2019, 14, e0223745.	2.5	7
136	Towards detecting structural branching and cyclicity in graphs: A polynomial-based approach. Information Sciences, 2019, 471, 19-28.	6.9	7
137	What Is Quantitative Graph Theory?. Discrete Mathematics and Its Applications, 2014, , 1-33.	0.1	7
138	Predicting Cell Cycle Regulated Genes by Causal Interactions. PLoS ONE, 2009, 4, e6633.	2.5	7
139	Editorial: Artificial Intelligence for Precision Medicine. Frontiers in Artificial Intelligence, 2021, 4, 834645.	3.4	7
140	A comparative analysis of multidimensional features of objects resembling sets of graphs. Applied Mathematics and Computation, 2008, 196, 221-235.	2.2	6
141	Graph measures with high discrimination power revisited: A random polynomial approach. Information Sciences, 2018, 467, 407-414.	6.9	6
142	MetrIntSimil—An Accurate and Robust Metric for Comparison of Similarity in Intelligence of Any Number of Cooperative Multiagent Systems. Symmetry, 2018, 10, 48.	2.2	6
143	Hermitian normalized Laplacian matrix for directed networks. Information Sciences, 2019, 495, 175-184.	6.9	6
144	Global Genetics Research in Prostate Cancer: A Text Mining and Computational Network Theory Approach. Frontiers in Genetics, 2019, 10, 70.	2.3	6

#	Article	IF	CITATIONS
145	On the zeros of the partial Hosoya polynomial of graphs. Information Sciences, 2020, 524, 199-215.	6.9	6
146	Data-Driven Computational Social Network Science: Predictive and Inferential Models for Web-Enabled Scientific Discoveries. Frontiers in Big Data, 2021, 4, 591749.	2.9	6
147	Parametric Construction of Episode Networks from Pseudoperiodic Time Series Based on Mutual Information. PLoS ONE, 2011, 6, e27733.	2.5	5
148	Limitations of Gene Duplication Models: Evolution of Modules in Protein Interaction Networks. PLoS ONE, 2012, 7, e35531.	2.5	5
149	Network Nursing: Connections Between Nursing and Complex Network Science. International Journal of Nursing Knowledge, 2013, 24, 150-156.	1.0	5
150	The Need for Formally Defining "Modern Medicine―by Means of Experimental Design. Frontiers in Genetics, 2016, 7, 60.	2.3	5
151	The Maximum Hosoya Index of Unicyclic Graphs with Diameter at Most Four. Symmetry, 2019, 11, 1034.	2.2	5
152	Constrained Covariance Matrices With a Biologically Realistic Structure: Comparison of Methods for Generating High-Dimensional Gaussian Graphical Models. Frontiers in Applied Mathematics and Statistics, 2019, 5, .	1.3	5
153	Properties of Commuting Graphs over Semidihedral Groups. Symmetry, 2021, 13, 103.	2.2	5
154	Analysis of the real number of infected people by COVID-19: A system dynamics approach. PLoS ONE, 2021, 16, e0245728.	2.5	5
155	Limitations of Explainability for Established Prognostic Biomarkers of Prostate Cancer. Frontiers in Genetics, 2021, 12, 649429.	2.3	5
156	A Brief Introduction to Complex Networks and Their Analysis. , 2011, , 1-26.		5
157	NONLINEAR TIME SERIES PREDICTION BASED ON A POWER-LAW NOISE MODEL. International Journal of Modern Physics C, 2007, 18, 1839-1852.	1.7	4
158	Comparing Biological Networks: A Survey on Graph Classifying Techniques. , 2013, , 43-63.		4
159	Structural Properties and Complexity of a New Network Class: Collatz Step Graphs. PLoS ONE, 2013, 8, e56461.	2.5	4
160	Enhancing systems medicine beyond genotype data by dynamic patient signatures: having information and using it too. Frontiers in Genetics, 2013, 4, 241.	2.3	4
161	Effects of subsampling on characteristics of RNA-seq data from triple-negative breast cancer patients. Chinese Journal of Cancer, 2015, 34, 427-38.	4.9	4
162	Toward Measuring Network Aesthetics Based on Symmetry. Axioms, 2017, 6, 12.	1.9	4

Frank Emmert-Streib

#	Article	lF	CITATIONS
163	Properties of graph distance measures by means of discrete inequalities. Applied Mathematical Modelling, 2018, 59, 739-749.	4.2	4
164	On the Degeneracy of the Orbit Polynomial and Related Graph Polynomials. Symmetry, 2020, 12, 1643.	2.2	4
165	Towards Network Complexity. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009, , 707-714.	0.3	4
166	A constrained HMM-based approach to the estimation of perceptual switching dynamics in pigeons. Neurocomputing, 2001, 38-40, 1495-1501.	5.9	3
167	Global information processing in gene networks: Fault tolerance. , 2007, , .		3
168	Hierarchical coordination of periodic genes in the cell cycle of Saccharomyces cerevisiae. BMC Systems Biology, 2009, 3, 76.	3.0	3
169	Netmes: Assessing Gene Network Inference Algorithms by Network-Based Measures. Evolutionary Bioinformatics, 2014, 10, EBO.S13481.	1.2	3
170	Extracting the Strongest Signals from Omics Data: Differentially Expressed Pathways and Beyond. Methods in Molecular Biology, 2017, 1613, 125-159.	0.9	3
171	Impact of Variable RNA-Sequencing Depth on Gene Expression Signatures and Target Compound Robustness: Case Study Examining Brain Tumor (Glioma) Disease Progression. JCO Precision Oncology, 2018, 2, 1-17.	3.0	3
172	Inference of Genome-Scale Gene Regulatory Networks: Are There Differences in Biological and Clinical Validations?. Machine Learning and Knowledge Extraction, 2018, 1, 138-148.	5.0	3
173	A Note on Distance-Based Entropy of Dendrimers. Axioms, 2019, 8, 98.	1.9	3
174	In-flight Wind Field Identification and Prediction of Parafoil Systems. Applied Sciences (Switzerland), 2020, 10, 1958.	2.5	3
175	On the relationship between PageRank and automorphisms of a graph. Information Sciences, 2021, 579, 401-417.	6.9	3
176	Prognostic modeling of predictive maintenance with survival analysis for mobile work equipment. Scientific Reports, 2022, 12, .	3.3	3
177	Universal construction mechanism for networks from one-dimensional symbol sequences. Applied Mathematics and Computation, 2012, 219, 1020-1030.	2.2	2
178	Evolutionary dynamics of the spatial Prisoner's Dilemma with self-inhibition. Applied Mathematics and Computation, 2012, 218, 6482-6488.	2.2	2
179	[COMMODE] a large-scale database of molecular descriptors using compounds from PubChem. Source Code for Biology and Medicine, 2013, 8, 22.	1.7	2
180	Discrimination Power of Polynomial-Based Descriptors for Graphs by Using Functional Matrices. PLoS ONE, 2015, 10, e0139265.	2.5	2

#	Article	IF	CITATIONS
181	Exploiting Genomic Relations in Big Data Repositories by Graph-Based Search Methods. Machine Learning and Knowledge Extraction, 2018, 1, 205-210.	5.0	2
182	A Note on Graphs with Prescribed Orbit Structure. Entropy, 2019, 21, 1118.	2.2	2
183	Ensuring Quality Standards and Reproducible Research for Data Analysis Services in Oncology: A Cooperative Service Model. Frontiers in Cell and Developmental Biology, 2019, 7, 349.	3.7	2
184	On the degeneracy of the Randić entropy and related graph measures. Information Sciences, 2019, 501, 680-687.	6.9	2
185	Relations and bounds for the zeros of graph polynomials using vertex orbits. Applied Mathematics and Computation, 2020, 380, 125239.	2.2	2
186	The watching system as a generalization of identifying code. Applied Mathematics and Computation, 2020, 380, 125302.	2.2	2
187	Editorial: AI and Multi-Omics for Rare Diseases: Challenges, Advances and Perspectives. Frontiers in Molecular Biosciences, 2021, 8, 719978.	3.5	2
188	Relationships between symmetry-based graph measures. Information Sciences, 2021, 581, 291-303.	6.9	2
189	Network-Based Methods for Computational Diagnostics by Means of R. , 2012, , 185-197.		2
190	Mathematical Modeling in Systems Biology. Communications in Computer and Information Science, 2017, , 161-166.	0.5	2
191	STOCHASTIC SZNAJD MODEL IN OPEN COMMUNITY. International Journal of Modern Physics C, 2005, 16, 1693-1699.	1.7	1
192	Network Classes and Graph Complexity Measures. , 2008, , .		1
193	Comments to "Quantification of network structural dissimilarities―published by Schieber et al. Mathematical Methods in the Applied Sciences, 2018, 41, 5711-5713.	2.3	1
194	On efficient network similarity measures. Applied Mathematics and Computation, 2019, 362, 124521.	2.2	1
195	Proteome-transcriptome alignment of molecular portraits achieved by self-contained gene set analysis: Consensus colon cancer subtypes case study. PLoS ONE, 2019, 14, e0221444.	2.5	1
196	Partition and Colored Distances in Graphs Induced to Subsets of Vertices and Some of Its Applications. Symmetry, 2020, 12, 2027.	2.2	1
197	Orbit Entropy and Symmetry Index Revisited. Mathematics, 2021, 9, 1086.	2.2	1
198	Grand Challenges for Artificial Intelligence in Molecular Medicine. Frontiers in Molecular Medicine, 2021, 1, .	1.9	1

#	Article	IF	CITATIONS
199	Are There Limits in Explainability of Prognostic Biomarkers? Scrutinizing Biological Utility of Established Signatures. Cancers, 2021, 13, 5087.	3.7	1
200	Identifying key interactions between process variables of different material categories using mutual information-based network inference method. Procedia Computer Science, 2022, 200, 1550-1564.	2.0	1
201	Towards a Channel Capacity of Communication Networks. , 2008, , .		0
202	Finding Verified Edges in Genetic/Gene Networks: Bilayer Verification for Network Recovery in the Presence of Hidden Confounders. , 0, , 51-81.		0
203	Predicting Functional Modules Using Microarray and Protein Interaction Data. , 0, , 307-329.		0
204	Graph Structure Analysis and Computational Tractability of Scheduling Problems. , 0, , 295-322.		0
205	Elementary Elliptic (R, q)-Polycycles. , 0, , 351-376.		0
206	Mining Graph Patterns in Web-based Systems: A Conceptual View. Text, Speech and Language Technology, 2010, , 237-253.	0.2	0
207	A Bayesian analysis of the chromosome architecture of human disorders by integrating reductionist data. Scientific Reports, 2012, 2, 513.	3.3	0
208	Detecting sequence dependent transcriptional pauses from RNA and protein number time series. BMC Bioinformatics, 2012, 13, 152.	2.6	0
209	Semisupervised Methods for Analyzing High-dimensional Genomic Data. , 2013, , 93-106.		0
210	Network Medicine: Disease Genes in Molecular Networks. , 2013, , 133-151.		0
211	Learning Systems Biology: Conceptual Considerations toward a Web-Based Learning Platform. Education Sciences, 2013, 3, 158-171.	2.6	0
212	Enhancing our understanding of ways to analyze metagenomes. Frontiers in Genetics, 2014, 5, 108.	2.3	0
213	Report from the 2nd Summer School in Computational Biology organized by the Queen's University of Belfast. Genomics Data, 2014, 2, 37-39.	1.3	0
214	Biological networks: the microscope of the twenty-first century?. Frontiers in Genetics, 2015, 6, 307.	2.3	0
215	Structural Analysis of Treatment Cycles Representing Transitions between Nursing Organizational Units Inferred from Diabetes. PLoS ONE, 2015, 10, e0127152.	2.5	0
216	Network signatures based on gene pair expression ratios improve classification and the analysis of muscle-invasive urothelial cancer. , 2015, , .		0

#	Article	IF	CITATIONS
217	Using shRNA experiments to validate gene regulatory networks. Genomics Data, 2015, 4, 123-126.	1.3	0
218	A Graph Theoretic Approach to Construct Desired Cryptographic Boolean Functions. Axioms, 2019, 8, 40.	1.9	0
219	A Neurobiologically Motivated Model for Self-organized Learning. Lecture Notes in Computer Science, 2005, , 415-424.	1.3	0
220	A Novel Stochastic Learning Rule for Neural Networks. Lecture Notes in Computer Science, 2006, , 414-423.	1.3	0
221	Global Information Processing in Gene Networks: Fault Tolerance. , 2007, , .		0
222	Towards a Partitioning of the Input Space of Boolean Networks: Variable Selection Using Bagging. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009, , 715-723.	0.3	0
223	Organizational Structure of the Transcriptional Regulatory Network of Yeast: Periodic Genes. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009, , 140-148.	0.3	0
224	Large-Scale Statistical Inference of Gene Regulatory Networks: Local Network-Based Measures. Intelligent Systems Reference Library, 2011, , 179-193.	1.2	0
225	Urinary Thrombomodulin Levels Were Significantly Higher Following Occupational Exposure to Chemicals, In The Presence of Dipstick Protein, But Not in the Presence of Dipstick Blood. Biology and Medicine (Aligarh), 2016, 08, .	0.3	0
226	Abstract 2270: A BRCA1 deficient, NFκB driven immune signal predicts good outcome in triple negative breast cancer. , 2016, , .		0
227	Network Science: From Chemistry to Digital Society. Frontiers for Young Minds, 0, 7, .	0.8	0
228	14. Differential equations. , 2020, , 253-266.		0
229	4. Installation of R packages. , 2020, , 27-30.		0
230	5. Introduction to programming in R. , 2020, , 31-78.		0
231	17. Probability theory. , 2020, , 331-374.		0
232	3. Setting up and installing the R program. , 2020, , 23-26.		0
233	7. Basic plotting functions. , 2020, , 97-116.		0
234	9. Visualization of networks. , 2020, , 133-150.		0

9. Visualization of networks. , 2020, , 133-150. 234

#	Article	IF	CITATIONS
235	18. Optimization. , 2020, , 375-402.		0
236	8. Advanced plotting functions: ggplot2. , 2020, , 117-132.		0
237	2. Overview of programming paradigms. , 2020, , 11-22.		0
238	10. Mathematics as a language for science. , 2020, , 153-170.		0
239	12. Linear algebra. , 2020, , 181-228.		0
240	15. Dynamical systems. , 2020, , 267-304.		0
241	13. Analysis. , 2020, , 229-252.		0
242	16. Graph theory and network analysis. , 2020, , 305-330.		0
243	6. Creating R packages. , 2020, , 79-94.		0
244	11. Computability and complexity. , 2020, , 171-180.		0
245	Optimization Procedure for Predicting Nonlinear Time Series Based on a Non-Gaussian Noise Model. , 2007, , 540-549.		0
246	Automorphism Groups of Alkane Graphs. Croatica Chemica Acta, 2021, 94, .	0.4	0
247	The Most Probable Genetic Interaction Networks Inferred from Gene Expression Patterns. , 0, , 385-412.		0