
Paul De Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7537523/publications.pdf Version: 2024-02-01

DALLE DE SOLISA

#	Article	IF	CITATIONS
1	Cardiac Malformation in Neonatal Mice Lacking Connexin43. Science, 1995, 267, 1831-1834.	12.6	1,195
2	Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nature Biotechnology, 2011, 29, 1132-1144.	17.5	509
3	Somatic cell nuclear transfer. Nature, 2002, 419, 583-587.	27.8	493
4	Deletion of the α(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nature Biotechnology, 2001, 19, 559-562.	17.5	256
5	Evaluation of Gestational Deficiencies in Cloned Sheep Fetuses and Placentae1. Biology of Reproduction, 2001, 65, 23-30.	2.7	194
6	Lineage-specific distribution of high levels of genomic. Cell Research, 2011, 21, 1332-1342.	12.0	174
7	Somatic Cell Nuclear Transfer in the Pig: Control of Pronuclear Formation and Integration with Improved Methods for Activation and Maintenance of Pregnancy1. Biology of Reproduction, 2002, 66, 642-650.	2.7	165
8	Impact of Bovine Oocyte Maturation Media on Oocyte Transcript Levels, Blastocyst Development, Cell Number, and Apoptosis1. Biology of Reproduction, 2000, 62, 355-364.	2.7	156
9	Transient Expression of Translation Initiation Factor eIF-4C during the 2-Cell Stage of the Preimplantation Mouse Embryo: Identification by mRNA Differential Display and the Role of DNA Replication in Zygotic Gene Activation. Developmental Biology, 1996, 174, 190-201.	2.0	154
10	Consensus Guidance for Banking and Supply of Human Embryonic Stem Cell Lines for Research Purposes. Stem Cell Reviews and Reports, 2009, 5, 301-314.	5.6	132
11	Observing Huntington's Disease: the European Huntington's Disease Network's REGISTRY. PLOS Currents, 2010, 2, RRN1184.	1.4	124
12	Dielectrophoresis: A Review of Applications for Stem Cell Research. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-7.	3.0	120
13	A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells. Nature Communications, 2013, 4, 1335.	12.8	112
14	Connexin trafficking and the control of gap junction assembly in mouse preimplantation embryos. Development (Cambridge), 1993, 117, 1355-1367.	2.5	112
15	Cumulus gene expression as a predictor of human oocyte fertilisation, embryo development and competence to establish a pregnancy. Reproduction, 2009, 138, 629-637.	2.6	109
16	Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: International Stem Cell Banking Initiative (ISCBI). Regenerative Medicine, 2015, 10, 1-44.	1.7	100
17	Temporal patterns of embryonic gene expression and their dependence on oogenetic factors. Theriogenology, 1998, 49, 115-128.	2.1	90
18	Germinal Vesicle Material Is Essential for Nucleus Remodeling after Nuclear Transfer1. Biology of Reproduction, 2002, 67, 928-934.	2.7	78

#	Article	IF	CITATIONS
19	Coexpression of gap junction proteins in the cumulus-oocyte complex. Molecular Reproduction and Development, 1993, 36, 7-15.	2.0	73
20	Proliferative lifespan is conserved after nuclear transfer. Nature Cell Biology, 2003, 5, 535-538.	10.3	72
21	Analysis of variation in relative mRNA abundance for specific gene transcripts in single bovine oocytes and early embryos. Molecular Reproduction and Development, 1998, 49, 119-130.	2.0	71
22	5-Azacytidine Improves the Osteogenic Differentiation Potential of Aged Human Adipose-Derived Mesenchymal Stem Cells by DNA Demethylation. PLoS ONE, 2014, 9, e90846.	2.5	71
23	Oogenetic and zygotic gene expression directing early bovine embryogenesis: A review. Molecular Reproduction and Development, 1998, 51, 112-121.	2.0	69
24	Gene expression regulating blastocyst formation. Theriogenology, 1999, 51, 117-133.	2.1	66
25	Brain-derived neurotrophic factor promotes bovine oocyte cytoplasmic competence for embryo development. Reproduction, 2005, 129, 423-434.	2.6	64
26	Somatic Cell Nuclear Transfer: Recent Progress and Challenges. Cloning and Stem Cells, 2002, 4, 81-90.	2.6	63
27	Improvement of an Electrical Activation Protocol for Porcine Oocytes1. Biology of Reproduction, 2002, 66, 635-641.	2.7	60
28	Human cloning: can it be made safe?. Nature Reviews Genetics, 2003, 4, 855-864.	16.3	60
29	Cloned Mice Derived from Embryonic Stem Cell Karyoplasts and Activated Cytoplasts Prepared by Induced Enucleation. Biology of Reproduction, 2003, 68, 1259-1266.	2.7	60
30	Transient Expression of a Translation Initiation Factor Is Conservatively Associated with Embryonic Gene Activation in Murine and Bovine Embryos1. Biology of Reproduction, 1998, 59, 969-977.	2.7	59
31	Zygotic expression of the connexin43 gene supplies subunits for gap junction assembly during mouse preimplantation development. Molecular Reproduction and Development, 1991, 30, 18-26.	2.0	57
32	Reprogramming of Fibroblast Nuclei after Transfer into Bovine Oocytes. Cloning, 1999, 1, 63-69.	2.1	57
33	Effect of Cell Confluence on Production of Cloned Mice Using an Inbred Embryonic Stem Cell Line1. Biology of Reproduction, 2003, 68, 595-603.	2.7	54
34	The Molecular Karyotype of 25 Clinical-Grade Human Embryonic Stem Cell Lines. Scientific Reports, 2015, 5, 17258.	3.3	54
35	Variations in Humanized and Defined Culture Conditions Supporting Derivation of New Human Embryonic Stem Cell Lines. Cloning and Stem Cells, 2006, 8, 319-334.	2.6	52
36	Sensitivity of bovine blastocyst gene expression patterns to culture environments assessed by differential display RT-PCR. Reproduction, 2001, 122, 687-693.	2.6	51

#	Article	IF	CITATIONS
37	Rapid establishment of the European Bank for induced Pluripotent Stem Cells (EBiSC) - the Hot Start experience. Stem Cell Research, 2017, 20, 105-114.	0.7	51
38	Development and production of good manufacturing practice grade human embryonic stem cell lines as source material for clinical application. Stem Cell Research, 2016, 17, 379-390.	0.7	48
39	Normal development of preimplantation mouse embryos deficient in gap junctional coupling. Journal of Cell Science, 1997, 110, 1751-1758.	2.0	41
40	Dielectrophoresis based discrimination of human embryonic stem cells from differentiating derivatives. Biomicrofluidics, 2012, 6, 44113.	2.4	38
41	Regulation of Na+,K+-ATPase α Subunit Gene Expression during Mouse Preimplantation Development. Developmental Biology, 1994, 162, 259-266.	2.0	34
42	Brain-derived neurotrophic factor is a regulator of human oocyte maturation and early embryo development. Fertility and Sterility, 2010, 93, 1394-1406.	1.0	34
43	Elasticity of Human Embryonic Stem Cells as Determined by Atomic Force Microscopy. Journal of Biomechanical Engineering, 2011, 133, 101009.	1.3	31
44	Paracrine signalling events in embryonic stem cell renewal mediated by affinity targeted nanoparticles. Biomaterials, 2012, 33, 6634-6643.	11.4	30
45	Monocrotophos in Gandaman village: India school lunch deaths and need for improved toxicity testing. Archives of Toxicology, 2013, 87, 1877-1881.	4.2	30
46	Expression of FBN1 during adipogenesis: Relevance to the lipodystrophy phenotype in Marfan syndrome and related conditions. Molecular Genetics and Metabolism, 2016, 119, 174-185.	1.1	29
47	Long term mesenchymal stem cell culture on a defined synthetic substrate with enzyme free passaging. Biomaterials, 2014, 35, 5998-6005.	11.4	28
48	Embryo development and establishment of pregnancy after embryo transfer in pigs: coping with limitations in the availability of viable embryos. Reproduction, 2002, 123, 507-515.	2.6	27
49	Effects of donor oocytes and culture conditions on development of cloned mice embryos. Molecular Reproduction and Development, 2003, 66, 126-133.	2.0	27
50	Clinically failed eggs as a source of normal human embryo stem cells. Stem Cell Research, 2009, 2, 188-197.	0.7	27
51	Highâ€Đensity Polymer Microarrays: Identifying Synthetic Polymers that Control Human Embryonic Stem Cell Growth. Advanced Healthcare Materials, 2014, 3, 848-853.	7.6	26
52	Semi-quantitative immunohistochemical detection of 5-hydroxymethyl-cytosine reveals conservation of its tissue distribution between amphibians and mammals. Epigenetics, 2012, 7, 137-140.	2.7	24
53	A role for intracellular calcium downstream of G-protein signaling in undifferentiated human embryonic stem cell culture. Stem Cell Research, 2012, 9, 171-184.	0.7	22
54	EBiSC best practice: How to ensure optimal generation, qualification, and distribution of iPSC lines. Stem Cell Reports, 2021, 16, 1853-1867.	4.8	20

#	Article	IF	CITATIONS
55	The road to providing human embryo stem cells for therapeutic use: the UK experience. Reproduction, 2006, 132, 681-689.	2.6	17
56	Human Parthenogenetic Embryo Stem Cells: Appreciating What You Have When You Have It. Cell Stem Cell, 2007, 1, 243-244.	11.1	17
57	Connexin trafficking and the control of gap junction assembly in mouse preimplantation embryos. Development (Cambridge), 1993, 117, 1355-67.	2.5	17
58	Derivation of the clinical grade human embryonic stem cell line RCeO21-A (RC-17). Stem Cell Research, 2016, 17, 1-5.	0.7	15
59	Novel Human Embryonic Stem Cell Regulators Identified by Conserved and Distinct CpG Island Methylation State. PLoS ONE, 2015, 10, e0131102.	2.5	15
60	Derivation of the clinical grade human embryonic stem cell line RCe013-A (RC-9). Stem Cell Research, 2016, 17, 36-41.	0.7	13
61	Neurotrophin Signaling in Oocyte Survival and Developmental Competence: A Paradigm for Cellular Toti-Potency. Cloning and Stem Cells, 2004, 6, 375-385.	2.6	12
62	Balancing open source stem cell science with commercialization. Nature Biotechnology, 2011, 29, 115-116.	17.5	12
63	Human embryonic stem cells rapidly take up and then clear exogenous human and animal prions <i>in vitro</i> . Journal of Pathology, 2011, 223, 635-645.	4.5	12
64	A high-throughput polymer microarray approach for identifying defined substrates for mesenchymal stem cells. Biomaterials Science, 2014, 2, 1683-1692.	5.4	11
65	The effect of cytochalasin D on protein synthesis inXenopus laevis oocytes. Molecular Reproduction and Development, 1990, 26, 248-252.	2.0	10
66	Regulation of gene expression in the preimplantation mouse embryo. Theriogenology, 1995, 44, 1115-1131.	2.1	9
67	Red blood cells from pluripotent stem cells for use in transfusion. Regenerative Medicine, 2010, 5, 411-423.	1.7	9
68	Human Tonsil-Derived Follicular Dendritic-Like Cells are Refractory to Human Prion Infection inÂVitro and Traffic Disease-Associated Prion Protein to Lysosomes. American Journal of Pathology, 2014, 184, 64-70.	3.8	8
69	Thermoresponsive hydrogel maintains the mouse embryonic stem cell "naÃ⁻ve―pluripotency phenotype. Biomaterials Science, 2015, 3, 1371-1375.	5.4	8
70	A scalable label-free approach to separate human pluripotent cells from differentiated derivatives. Biomicrofluidics, 2016, 10, 014107.	2.4	7
71	Normal development of preimplantation mouse embryos deficient in gap junctional coupling. Journal of Cell Science, 1997, 110 (Pt 15), 1751-8.	2.0	7
72	White matter tract and glial-associated changes in 5-hydroxymethylcytosine following chronic cerebral hypoperfusion. Brain Research, 2014, 1592, 82-100.	2.2	6

#	Article	IF	CITATIONS
73	Derivation of the clinical grade human embryonic stem cell line RCe018-A (RC-14). Stem Cell Research, 2016, 16, 761-765.	0.7	6
74	Hot Start to European Pluripotent Stem Cell Banking. Trends in Biotechnology, 2017, 35, 573-576.	9.3	6
75	Sufficiency of hypoxia-inducible 2-oxoglutarate dioxygenases to block chemical oxidative stress-induced differentiation of human embryonic stem cells. Stem Cell Research, 2019, 34, 101358.	0.7	5
76	Optimising the therapeutic safety of human embryonic stem cells through the evolution of defined culture systems supporting their isolation. Expert Opinion on Biological Therapy, 2006, 6, 551-554.	3.1	4
77	Derivation of the clinical grade human embryonic stem cell line RCe015-A (RC-11). Stem Cell Research, 2016, 17, 42-48.	0.7	4
78	Renewed assessment of the risk of emergent advanced cell therapies to transmit neuroproteinopathies. Acta Neuropathologica, 2019, 137, 363-377.	7.7	4
79	Maintenance of Pregnancy in Pigs With Limited Viable Embryos. Methods in Molecular Biology, 2006, 348, 79-90.	0.9	4
80	Derivation of the clinical grade human embryonic stem cell line RCe016-A (RC-12). Stem Cell Research, 2016, 16, 770-775.	0.7	3
81	Datasets of genes coexpressed with FBN1 in mouse adipose tissue and during human adipogenesis. Data in Brief, 2016, 8, 851-857.	1.0	3
82	Quality Assured Characterization of Stem Cells for Safety in Banking for Clinical Application. Methods in Molecular Biology, 2017, 1590, 79-98.	0.9	3
83	Analysis of variation in relative mRNA abundance for specific gene transcripts in single bovine oocytes and early embryos. Molecular Reproduction and Development, 1998, 49, 119-130.	2.0	3
84	Localization of α-subunits and comparison of α-subunit transcript levels in single cultured and in vivo bovine blastocysts. Theriogenology, 1997, 47, 316.	2.1	2
85	Derivation of the clinical grade human embryonic stem cell line RCe019-A (RC-15). Stem Cell Research, 2016, 16, 751-755.	0.7	2
86	Derivation of the clinical grade human embryonic stem cell line RCe017-A (RC-13). Stem Cell Research, 2016, 16, 756-760.	0.7	2
87	Derivation of the human embryonic stem cell line RCe010-A (RC-6). Stem Cell Research, 2016, 16, 481-484.	0.7	2
88	Derivation of the human embryonic stem cell line RCM1. Stem Cell Research, 2016, 16, 476-480.	0.7	2
89	Derivation of the clinical grade human embryonic stem cell line RCe020-a (RC-16). Stem Cell Research, 2016, 16, 790-794.	0.7	2
90	Effects of brefeldin-A and monensin on organelle distribution and morphology in the preimplantation mouse embryo. Development Genes and Evolution, 1997, 206, 503-514.	0.9	1

#	Article	IF	CITATIONS
91	Biologically equivalent substitutive technology: what is needed to manufacture pluripotent stem cells for next-generation platforms for discovery and therapy. Regenerative Medicine, 2013, 8, 519-521.	1.7	1
92	Derivation of the human embryonic stem cell line RCe007-A (RC-3). Stem Cell Research, 2016, 16, 593-596.	0.7	1
93	Derivation of the human embryonic stem cell line RCe009-A (RC-5). Stem Cell Research, 2016, 16, 418-422.	0.7	1
94	Derivation of the human embryonic stem cell line RCe012-A (RC-8). Stem Cell Research, 2016, 16, 489-492.	0.7	1
95	Derivation of the human embryonic stem cell line RCe014-A (RC-10). Stem Cell Research, 2016, 16, 537-540.	0.7	1
96	Derivation of the human embryonic stem cell line RCe008-A (RC-4). Stem Cell Research, 2016, 16, 607-610.	0.7	1
97	Derivation of the human embryonic stem cell line RCe006-A (RC-2). Stem Cell Research, 2016, 16, 452-455.	0.7	1
98	Derivation of the human embryonic stem cell line RCe011-A (RC-7). Stem Cell Research, 2016, 16, 485-488.	0.7	1
99	Quality Assessment and Production of Human Cells for Clinical Use. Methods in Molecular Biology, 2018, 1780, 607-629.	0.9	1
100	Stem Cells in the Development of Products for Regenerative Medicine. , 2012, , 77-97.		1
101	Cloning in Research and Treatment of Human Genetic Disease. , 2010, , 875-883.		Ο
102	Human Embryonic Stem Cell Banking for Clinical Applications—20ÂYears from Their Isolation. , 2021, , 273-286.		0
103	Maintenance of Pregnancy in Pigs With Limited Viable Embryos. , 0, , 79-90.		ο