
Shin-Ichi Tominaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7537509/publications.pdf Version: 2024-02-01

SHIN-ICHI TOMINACA

#	Article	IF	CITATIONS
1	Nuclear IL-33 regulates cytokinesis and cell motility in normal human epidermal keratinocytes. Journal of Dermatological Science, 2022, 105, 113-120.	1.9	2
2	Induction of IκBζ Augments Cytokine and Chemokine Production by IL-33 in Mast Cells. Journal of Immunology, 2020, 204, 2033-2042.	0.8	11
3	UGA stop codon readthrough to translate intergenic region of Plautia stali intestine virus does not require RNA structures forming internal ribosomal entry site. Rna, 2019, 25, 90-104.	3.5	Ο
4	Myeloid HMG-CoA (3-Hydroxy-3-Methylglutaryl-Coenzyme A) Reductase Determines Atherosclerosis by Modulating Migration of Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2590-2600.	2.4	23
5	ldentification of the promoter region of human IL-33 responsive to induction by IFNγ. Journal of Dermatological Science, 2017, 85, 137-140.	1.9	16
6	<scp>STAT</scp> 3 and <scp>ERK</scp> pathways are involved in cell growth stimulation of the <scp>ST</scp> 2/ <scp>IL</scp> 1 <scp>RL</scp> 1 promoter. FEBS Open Bio, 2017, 7, 293-302.	2.3	5
7	ST2 gene products critically contribute to cellular transformation caused by an oncogenic Ras mutant. Heliyon, 2017, 3, e00436.	3.2	15
8	Nuclear expression of IL-33 in epidermal keratinocytes promotes wound healing in mice. Journal of Dermatological Science, 2017, 85, 106-114.	1.9	52
9	Soluble ST2 suppresses the effect of interleukin-33 on lung type 2 innate lymphoid cells. Biochemistry and Biophysics Reports, 2016, 5, 401-407.	1.3	17
10	Soluble form of the ST2 gene product exhibits growth promoting activity in NIH-3T3 cells. Biochemistry and Biophysics Reports, 2016, 5, 8-15.	1.3	11
11	Dual function of IL-33 on proliferation of NIH-3T3 cells. Cytokine, 2015, 72, 105-108.	3.2	12
12	Expression of IL-33 in the epidermis: The mechanism of induction by IL-17. Journal of Dermatological Science, 2013, 71, 107-114.	1.9	63
13	Presence of a novel exon 2E encoding a putative transmembrane protein in human IL-33 gene. Biochemical and Biophysical Research Communications, 2013, 430, 969-974.	2.1	5
14	Soluble ST2 controls allergic inflammation in a murine model of asthma. FASEB Journal, 2013, 27, 835.4.	0.5	0
15	Soluble ST2 protein inhibits LPS stimulation on monocyte-derived dendritic cells. Cellular and Molecular Immunology, 2012, 9, 399-409.	10.5	21
16	Ultraviolet B irradiation induces the expression of IL-33 mRNA and protein in normal human epidermal keratinocytes. Journal of Dermatological Science, 2012, 65, 72-74.	1.9	16
17	Regulation of IL-33 Expression by IFN-Î ³ and Tumor Necrosis Factor-α in Normal Human Epidermal Keratinocytes. Journal of Investigative Dermatology, 2012, 132, 2593-2600.	0.7	94
18	ST2 gene expression is proliferation-dependent and its ligand, IL-33, induces inflammatory reaction in endothelial cells. Molecular and Cellular Biochemistry, 2010, 335, 75-81.	3.1	72

SHIN-ІСНІ ТОМІНА

#	Article	IF	CITATIONS
19	Characterization of ST2 transgenic mice with resistance to ILâ€33. European Journal of Immunology, 2010, 40, 2632-2642.	2.9	32
20	ST2 GENE INDUCED BY TYPE 2 HELPER T CELL (TH2) AND PROINFLAMMATORY CYTOKINE STIMULI MAY MODULATE LUNG INJURY AND FIBROSIS. Experimental Lung Research, 2007, 33, 81-97.	1.2	47
21	Soluble ST2 Blocks Interleukin-33 Signaling in Allergic Airway Inflammation. Journal of Biological Chemistry, 2007, 282, 26369-26380.	3.4	463
22	ST2 suppresses IL-6 production via the inhibition of lκB degradation induced by the LPS signal in THP-1 cells. Biochemical and Biophysical Research Communications, 2006, 341, 425-432.	2.1	70
23	SNIP1 Is a Candidate Modifier of the Transcriptional Activity of c-Myc on E Box-Dependent Target Genes. Molecular Cell, 2006, 24, 771-783.	9.7	60
24	T-helper type 2 cell-specific expression of the ST2 gene is regulated by transcription factor GATA-3. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2005, 1728, 53-64.	2.4	31
25	Functional SNPs in the distal promoter of the ST2 gene are associated with atopic dermatitis. Human Molecular Genetics, 2005, 14, 2919-2927.	2.9	165
26	Molecular cloning of the chicken ST2 gene and a novel variant form of the ST2 gene product, ST2LV. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1681, 1-14.	2.4	45
27	Identification of Serum Soluble ST2 Receptor as a Novel Heart Failure Biomarker. Circulation, 2003, 107, 721-726.	1.6	453
28	The Increase in Serum Soluble ST2 Protein Upon Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Chest, 2003, 124, 1206-1214.	0.8	152
29	A novel splice variant of mouse interleukin-1-receptor-associated kinase-1 (IRAK-1) activates nuclear factor-kappaB (NF-kappaB) and c-Jun N-terminal kinase (JNK). Biochemical Journal, 2003, 370, 159-166.	3.7	28
30	Expression and Regulation of ST2, an Interleukin-1 Receptor Family Member, in Cardiomyocytes and Myocardial Infarction. Circulation, 2002, 106, 2961-2966.	1.6	551
31	Expression of ST2 in Helper T Lymphocytes of Malignant Pleural Effusions. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 1005-1009.	5.6	51
32	ST2 protein induced by inflammatory stimuli can modulate acute lung inflammation. Biochemical and Biophysical Research Communications, 2002, 299, 18-24.	2.1	88
33	Activated, but not resting human Th2 cells, in contrast to Th1 and T regulatory cells, produce soluble ST2 and express low levels of ST2L at the cell surface. European Journal of Immunology, 2002, 32, 2979-2987.	2.9	68
34	The effect of ST2 gene product on anchorage-independent growth of a glioblastoma cell line, T98C. FEBS Journal, 2002, 270, 163-170.	0.2	14
35	Identification of Human ST2 Protein in the Sera of Patients with Autoimmune Diseases. Biochemical and Biophysical Research Communications, 2001, 284, 1104-1108.	2.1	124
36	Tissue Distribution and Subcellular Localization of a Variant Form of the Human ST2 Gene Product, ST2V. Biochemical and Biophysical Research Communications, 2001, 285, 1377-1383.	2.1	103

SHIN-ІСНІ ТОМІНА

#	Article	IF	CITATIONS
37	Elevated Soluble ST2 Protein Levels in Sera of Patients with Asthma with an Acute Exacerbation. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 277-281.	5.6	271
38	Construction of ELISA System to Quantify Human ST2 Protein in Sera of Patients. Hybridoma, 2000, 19, 151-159.	0.6	52
39	The Cloning and Nucleotide Sequence of Human ST2L cDNA. Genomics, 2000, 67, 284-290.	2.9	68
40	Different promoter usage and multiple transcription initiation sites of the interleukin-1 receptor-related human ST2 gene in UT-7 and TM12 cells. FEBS Journal, 1999, 264, 397-406.	0.2	198
41	Presence and Expression of a Novel Variant Form of ST2 Gene Product in Human Leukemic Cell Line UT-7/GM. Biochemical and Biophysical Research Communications, 1999, 264, 14-18.	2.1	91
42	Assignment of the human ST2 gene to chromosome 2 at q11.2. Human Genetics, 1996, 97, 561-563.	3.8	27
43	Assignment of the human ST2 gene to chromosome 2 at q11.2. Human Genetics, 1996, 97, 561-563.	3.8	3
44	Studies on Natural ST2 Gene Products in the Human Leukemic Cell Line UT-7 Using Monoclonal Antihuman ST2 Antibodies. Hybridoma, 1995, 14, 419-427.	0.6	28
45	The existence of a growth-specific DNA binding factor for the promoter region of mouse ST2 gene. FEBS Letters, 1994, 354, 311-314.	2.8	4
46	Different factors bind to the regulatory region of the Na+,K+-ATPase α1-subunit gene during the cell cycle. FEBS Letters, 1993, 335, 251-254.	2.8	16
47	Presence of a novel primary response gene ST2L, encoding a product highly similar to the interleukin 1 receptor type 1. FEBS Letters, 1993, 318, 83-87.	2.8	192
48	Identification of the product of the murine ST2 gene. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1178, 194-200.	4.1	27
49	Murine ST2 gene is a member of the primary response gene family induced by growth factors. FEBS Letters, 1992, 302, 51-53.	2.8	39
50	Nucleotide sequence of a complementary DNA for human ST2. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1171, 215-218.	2.4	51
51	Two Phosphorylation Reactions Induced by Murine Beta Interferon in BALB/c-3T3 Cells Cell Structure and Function, 1992, 17, 151-155.	1.1	0
52	Molecular cloning of the murine ST2 gene. Characterization and chromosomal mapping. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1090, 1-8.	2.4	69
53	A putative protein of a growth specific cDNA from BALB/Câ€3T3 cells is highly similar to the extracellular portion of mouse interleukin 1 receptor. FEBS Letters, 1989, 258, 301-304.	2.8	343
54	Murine mRNA for the β-subunit of integrin is increased in BALB/c-3T3 cells entering the G1 phase from the G0 state. FEBS Letters, 1988, 238, 315-319.	2.8	44

#	Article	IF	CITATIONS
55	Keratinocytes in Skin Disorders: The Importance of Keratinocytes as a Barrier. , 0, , .		0