Srinivasan Yegnasubramanian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7537227/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nature Medicine, 2009, 15, 559-565.	30.7	596
2	Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nature Genetics, 2010, 42, 668-675.	21.4	539
3	Distinct Transcriptional Programs Mediated by the Ligand-Dependent Full-Length Androgen Receptor and Its Splice Variants in Castration-Resistant Prostate Cancer. Cancer Research, 2012, 72, 3457-3462.	0.9	518
4	Hypermethylation of CpG Islands in Primary and Metastatic Human Prostate Cancer. Cancer Research, 2004, 64, 1975-1986.	0.9	467
5	Tracking the clonal origin of lethal prostate cancer. Journal of Clinical Investigation, 2013, 123, 4918-4922.	8.2	440
6	Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget, 2011, 2, 627-637.	1.8	383
7	Update on Systemic Prostate Cancer Therapies: Management of Metastatic Castration-resistant Prostate Cancer in the Era of Precision Oncology. European Urology, 2019, 75, 88-99.	1.9	333
8	The inflammatory microenvironment and microbiome in prostate cancer development. Nature Reviews Urology, 2018, 15, 11-24.	3.8	311
9	DNA Hypomethylation Arises Later in Prostate Cancer Progression than CpG Island Hypermethylation and Contributes to Metastatic Tumor Heterogeneity. Cancer Research, 2008, 68, 8954-8967.	0.9	255
10	Procainamide Is a Specific Inhibitor of DNA Methyltransferase 1. Journal of Biological Chemistry, 2005, 280, 40749-40756.	3.4	253
11	Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature, 2021, 596, 126-132.	27.8	234
12	DNA Methylation Alterations Exhibit Intraindividual Stability and Interindividual Heterogeneity in Prostate Cancer Metastases. Science Translational Medicine, 2013, 5, 169ra10.	12.4	231
13	Genomic and phenotypic heterogeneity in prostate cancer. Nature Reviews Urology, 2021, 18, 79-92.	3.8	215
14	Effect of bipolar androgen therapy for asymptomatic men with castration-resistant prostate cancer: Results from a pilot clinical study. Science Translational Medicine, 2015, 7, 269ra2.	12.4	205
15	Profiling the Urinary Microbiome in Men with Positive versus Negative Biopsies for Prostate Cancer. Journal of Urology, 2018, 199, 161-171.	0.4	188
16	Disulfiram is a DNA demethylating agent and inhibits prostate cancer cell growth. Prostate, 2011, 71, 333-343.	2.3	158
17	Decreased 5-Hydroxymethylcytosine Is Associated with Neural Progenitor Phenotype in Normal Brain and Shorter Survival in Malignant Glioma. PLoS ONE, 2012, 7, e41036.	2.5	152
18	A Novel Two-Stage, Transdisciplinary Study Identifies Digoxin as a Possible Drug for Prostate Cancer Treatment. Cancer Discovery, 2011, 1, 68-77.	9.4	145

#	Article	IF	CITATIONS
19	Minireview: Epigenetic Alterations in Human Prostate Cancers. Endocrinology, 2009, 150, 3991-4002.	2.8	135
20	Abnormal DNA methylation, epigenetics, and prostate cancer. Frontiers in Bioscience - Landmark, 2007, 12, 4254.	3.0	132
21	Clinical Validation of KRAS, BRAF, and EGFR Mutation Detection Using Next-Generation Sequencing. American Journal of Clinical Pathology, 2014, 141, 856-866.	0.7	128
22	Key tumor suppressor genes inactivated by "greater promoter―methylation and somatic mutations in head and neck cancer. Epigenetics, 2014, 9, 1031-1046.	2.7	122
23	Comprehensive Evaluation of Programmed Death-Ligand 1 Expression in Primary and Metastatic Prostate Cancer. American Journal of Pathology, 2018, 188, 1478-1485.	3.8	119
24	Increased Protein Stability Causes DNA Methyltransferase 1 Dysregulation in Breast Cancer. Journal of Biological Chemistry, 2005, 280, 18302-18310.	3.4	113
25	Global DNA hypomethylation in intratubular germ cell neoplasia and seminoma, but not in nonseminomatous male germ cell tumors. Modern Pathology, 2008, 21, 1337-1344.	5.5	110
26	Combined <i>MYC</i> Activation and <i>Pten</i> Loss Are Sufficient to Create Genomic Instability and Lethal Metastatic Prostate Cancer. Cancer Research, 2016, 76, 283-292.	0.9	102
27	c-Myc Antagonises the Transcriptional Activity of the Androgen Receptor in Prostate Cancer Affecting Key Gene Networks. EBioMedicine, 2017, 18, 83-93.	6.1	96
28	Transcription-Induced DNA Double Strand Breaks: Both Oncogenic Force and Potential Therapeutic Target?. Clinical Cancer Research, 2011, 17, 3858-3864.	7.0	92
29	Metabolic programs define dysfunctional immune responses in severe COVID-19 patients. Cell Reports, 2021, 34, 108863.	6.4	92
30	Genome-wide comparison of the transcriptomes of highly enriched normal and chronic myeloid leukemia stem and progenitor cell populations. Oncotarget, 2013, 4, 715-728.	1.8	92
31	Defining UHRF1 Domains that Support Maintenance of Human Colon Cancer DNA Methylation and Oncogenic Properties. Cancer Cell, 2019, 35, 633-648.e7.	16.8	89
32	Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation. Nucleic Acids Research, 2006, 34, e19-e19.	14.5	86
33	Redoxâ€Responsive Nanoparticleâ€Mediated Systemic RNAi for Effective Cancer Therapy. Small, 2018, 14, e1802565.	10.0	85
34	Molecular evidence that invasive adenocarcinoma can mimic prostatic intraepithelial neoplasia (<scp>PIN</scp>) and intraductal carcinoma through retrograde glandular colonization. Journal of Pathology, 2016, 238, 31-41.	4.5	83
35	Donor cell leukemia arising from clonal hematopoiesis after bone marrow transplantation. Leukemia, 2016, 30, 1916-1920.	7.2	79
36	Functional characterization of CD4+ T cell receptors crossreactive for SARS-CoV-2 and endemic coronaviruses. Journal of Clinical Investigation, 2021, 131, .	8.2	72

#	Article	IF	CITATIONS
37	Epigenetic DNA Methylation of Antioxidative Stress Regulator <i>NRF2</i> in Human Prostate Cancer. Cancer Prevention Research, 2014, 7, 1186-1197.	1.5	69
38	Transcriptional profiling identifies novel regulators of macrophage polarization. PLoS ONE, 2018, 13, e0208602.	2.5	68
39	Anti-inflammatory drugs, antioxidants, and prostate cancer prevention. Current Opinion in Pharmacology, 2009, 9, 419-426.	3.5	64
40	Chromosome-wide mapping of DNA methylation patterns in normal and malignant prostate cells reveals pervasive methylation of gene-associated and conserved intergenic sequences. BMC Genomics, 2011, 12, 313.	2.8	62
41	Chromatin dysregulation and DNA methylation at transcription start sites associated with transcriptional repression in cancers. Nature Communications, 2019, 10, 2188.	12.8	61
42	Immunogenicity of prostate cancer is augmented by BET bromodomain inhibition. , 2019, 7, 277.		53
43	MYC drives overexpression of telomerase RNA (<i>hTR</i> / <i>TERC</i>) in prostate cancer. Journal of Pathology, 2018, 244, 11-24.	4.5	51
44	Global DNA methylation changes and differential gene expression in Anaplasma phagocytophilum-infected human neutrophils. Clinical Epigenetics, 2015, 7, 77.	4.1	49
45	Prostate adenocarcinomas aberrantly expressing p63 are molecularly distinct from usual-type prostatic adenocarcinomas. Modern Pathology, 2015, 28, 446-456.	5.5	49
46	Diagnostic Challenges of Clonal Heterogeneity in Prostate Cancer. Journal of Clinical Oncology, 2015, 33, e38-e40.	1.6	48
47	GSTP1 Loss results in accumulation of oxidative DNA base damage and promotes prostate cancer cell survival following exposure to protracted oxidative stress. Prostate, 2016, 76, 199-206.	2.3	45
48	Premalignancy in Prostate Cancer: Rethinking What We Know. Cancer Prevention Research, 2016, 9, 648-656.	1.5	44
49	Nucleotide resolution analysis of <i><scp>TMPRSS2</scp></i> and <i><scp>ERG</scp></i> rearrangements in prostate cancer. Journal of Pathology, 2013, 230, 174-183.	4.5	41
50	A Novel Functional Splice Variant of <i>AKT3</i> Defined by Analysis of Alternative Splice Expression in HPV-Positive Oropharyngeal Cancers. Cancer Research, 2017, 77, 5248-5258.	0.9	41
51	Inflammation, Microbiota, and Prostate Cancer. European Urology Focus, 2016, 2, 374-382.	3.1	40
52	The Diet as a Cause of Human Prostate Cancer. Cancer Treatment and Research, 2014, 159, 51-68.	0.5	38
53	Integrated single-cell and bulk gene expression and ATAC-seq reveals heterogeneity and early changes in pathways associated with resistance to cetuximab in HNSCC-sensitive cell lines. British Journal of Cancer, 2020, 123, 101-113.	6.4	38
54	Androgen Deprivation Followed by Acute Androgen Stimulation Selectively Sensitizes AR-Positive Prostate Cancer Cells to Ionizing Radiation. Clinical Cancer Research, 2016, 22, 3310-3319.	7.0	37

#	Article	IF	CITATIONS
55	AIM1 is an actin-binding protein that suppresses cell migration and micrometastatic dissemination. Nature Communications, 2017, 8, 142.	12.8	36
56	Prostate Cancer Epigenetics: From Basic Mechanisms to Clinical Implications. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a030445.	6.2	33
57	Prospective Study of Genomic Hypomethylation of Leukocyte DNA and Colorectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 2014-2021.	2.5	30
58	CD38 is methylated in prostate cancer and regulates extracellular NAD+. Cancer & Metabolism, 2018, 6, 13.	5.0	28
59	Dickkopf-1 Can Lead to Immune Evasion in Metastatic Castration-Resistant Prostate Cancer. JCO Precision Oncology, 2020, 4, 1167-1179.	3.0	28
60	Prostate cancer epigenetics and its clinical implications. Asian Journal of Andrology, 2016, 18, 549.	1.6	28
61	Global 5-Hydroxymethylcytosine Levels Are Profoundly Reduced in Multiple Genitourinary Malignancies. PLoS ONE, 2016, 11, e0146302.	2.5	27
62	Entinostat Decreases Immune Suppression to Promote Antitumor Responses in a HER2+ Breast Tumor Microenvironment. Cancer Immunology Research, 2022, 10, 656-669.	3.4	26
63	Methylation of the <i>PMEPA1</i> gene, a negative regulator of the androgen receptor in prostate cancer. Epigenetics, 2014, 9, 918-927.	2.7	25
64	Molecular Pathology of High-Grade Prostatic Intraepithelial Neoplasia: Challenges and Opportunities. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a030403.	6.2	25
65	Consequences of interleukin 1βâ€ŧriggered chronic inflammation in the mouse prostate gland: Altered architecture associated with prolonged CD4 ⁺ infiltration mimics human proliferative inflammatory atrophy. Prostate, 2019, 79, 732-745.	2.3	25
66	RNA-Seq of the Nucleolus Reveals Abundant SNORD44-Derived Small RNAs. PLoS ONE, 2014, 9, e107519.	2.5	24
67	Time-Resolved Fluorescence Resonance Energy Transfer Assay for Discovery of Small-Molecule Inhibitors of Methyl-CpG Binding Domain Protein 2. Journal of Biomolecular Screening, 2014, 19, 1060-1069.	2.6	23
68	Androgen-Regulated SPARCL1 in the Tumor Microenvironment Inhibits Metastatic Progression. Cancer Research, 2015, 75, 4322-4334.	0.9	23
69	IgM anti-ACE2 autoantibodies in severe COVID-19 activate complement and perturb vascular endothelial function. JCI Insight, 2022, 7, .	5.0	23
70	Resistance to androgen receptor signaling inhibition does not necessitate development of neuroendocrine prostate cancer. JCl Insight, 2021, 6, .	5.0	22
71	An in Situ Atlas of Mitochondrial DNA in Mammalian Tissues Reveals High Content in StemÂand Proliferative Compartments. American Journal of Pathology, 2020, 190, 1565-1579.	3.8	21
72	If this is true, what does it imply? How end-user antibody validation facilitates insights into biology and disease. Asian Journal of Urology, 2019, 6, 10-25.	1.2	20

#	Article	IF	CITATIONS
73	Health inequity drives disease biology to create disparities in prostate cancer outcomes. Journal of Clinical Investigation, 2022, 132, .	8.2	17
74	Stable knockdown of PASG enhances DNA demethylation but does not accelerate cellular senescence in TIG-7 human fibroblasts. Epigenetics, 2008, 3, 281-286.	2.7	15
75	Humanizing π-Class Glutathione S-Transferase Regulation in a Mouse Model Alters Liver Toxicity in Response to Acetaminophen Overdose. PLoS ONE, 2011, 6, e25707.	2.5	14
76	Pervasive promoter hypermethylation of silenced TERT alleles in human cancers. Cellular Oncology (Dordrecht), 2020, 43, 847-861.	4.4	14
77	GSTP1 positive prostatic adenocarcinomas are more common in Black than White men in the United States. PLoS ONE, 2021, 16, e0241934.	2.5	14
78	Hypomethylation, endogenous retrovirus expression, and interferon signaling in testicular germ cell tumors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8580-E8582.	7.1	13
79	ETS2 is a prostate basal cell marker and is highly expressed in prostate cancers aberrantly expressing p63. Prostate, 2018, 78, 896-904.	2.3	13
80	Lactoferrin CpG Island Hypermethylation and Decoupling of mRNA and Protein Expression in the Early Stages of Prostate Carcinogenesis. American Journal of Pathology, 2019, 189, 2311-2322.	3.8	13
81	A high-throughput screen of pharmacologically active compounds for inhibitors of UHRF1 reveals epigenetic activity of anthracycline derivative chemotherapeutic drugs. Oncotarget, 2019, 10, 3040-3050.	1.8	13
82	Bisulfite-converted duplexes for the strand-specific detection and quantification of rare mutations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4733-4738.	7.1	12
83	Reciprocal <scp>YAP1</scp> loss and <scp>INSM1</scp> expression in neuroendocrine prostate cancer. Journal of Pathology, 2021, 255, 425-437.	4.5	12
84	Dietary Chemoprevention of PhIP Induced Carcinogenesis in Male Fischer 344 Rats with Tomato and Broccoli. PLoS ONE, 2013, 8, e79842.	2.5	11
85	Simultaneous quantitative determination of 5-aza-2â€ ² -deoxycytidine genomic incorporation and DNA demethylation by liquid chromatography tandem mass spectrometry as exposure-response measures of nucleoside analog DNA methyltransferase inhibitors. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2016, 1022, 38-45.	2.3	11
86	Epigenetic and transcriptional analysis reveals a core transcriptional program conserved in clonal prostate cancer metastases. Molecular Oncology, 2021, 15, 1942-1955.	4.6	10
87	Multiplex immunohistochemical phenotyping of T cells in primary prostate cancer. Prostate, 2022, 82, 706-722.	2.3	10
88	Genomic profiles and clinical outcomes in primary versus secondary metastatic hormoneâ€sensitive prostate cancer. Prostate, 2021, 81, 572-579.	2.3	9
89	Phenotypic characterization of two novel cell line models of castrationâ€resistant prostate cancer. Prostate, 2021, 81, 1159-1171.	2.3	9
90	Explanatory Chapter. Methods in Enzymology, 2013, 529, 201-208.	1.0	6

#	Article	IF	CITATIONS
91	The structure of the nucleus in normal and neoplastic prostate cells: untangling the role of type 2 DNA topoisomerases. American Journal of Clinical and Experimental Urology, 2018, 6, 107-113.	0.4	5
92	Preparation of Fragment Libraries for Next-Generation Sequencing on the Applied Biosystems SOLiD Platform. Methods in Enzymology, 2013, 529, 185-200.	1.0	4
93	Characterization of novel cell lines derived from a MYCâ€driven murine model of lethal metastatic adenocarcinoma of the prostate. Prostate, 2018, 78, 992-1000.	2.3	4
94	GLUTATHIONE S-TRANSFERASE PI (GSTP1) DEFICIENCY ACCELERATES PROSTATE CARCINOGENESIS IN THE LO-MYC MOUSE. Journal of Urology, 2009, 181, 183-184.	0.4	3
95	Longitudinal measurement of subcutaneous and intratibial human prostate cancer xenograft growth and response to ionizing radiation by plasma Alu and LINEâ€1 ctDNA: A comparison to standard methods. Prostate, 2021, 81, 745-753.	2.3	3
96	Identifying Phased Mutations and Complex Rearrangements in Human Prostate Cancer Cell Lines through Linked-Read Whole-Genome Sequencing. Molecular Cancer Research, 2022, 20, 1013-1020.	3.4	3
97	Aiming for the Outliers: Cancer Precision Medicine through Targeting Kinases with Extreme Expression. Cancer Discovery, 2013, 3, 252-254.	9.4	2
98	Androgen Receptor Splice Variants Are Not Substrates of Nonsenseâ€Mediated Decay. Prostate, 2017, 77, 829-837.	2.3	2
99	Genome-Wide DNA Methylation Analysis in Cancer Research. , 2010, , 47-66.		2
100	Mechanisms, Challenges, and Opportunities in Combined Radiation and Hormonal Therapies. Seminars in Radiation Oncology, 2022, 32, 76-81.	2.2	2
101	Epigenetic Changes in Prostate Cancer. , 2013, , 169-179.		0
102	Abstract 2404: Increased mitochondrial DNA copy number occurs during prostate cancer progression and in cancer precursor lesions across multiple organs. , 2021, , .		0
103	Chemopreventative effects of tomato and broccoli in the PhIP carcinogenesis rat model. FASEB Journal, 2011, 25, 225.7.	0.5	0