
Tarja Häkkinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7537172/publications.pdf Version: 2024-02-01

TADIA HÃØKINEN

#	Article	IF	CITATIONS
1	Barriers and drivers for sustainable building. Building Research and Information, 2011, 39, 239-255.	3.9	447
2	Material Efficiency of Building Construction. Buildings, 2014, 4, 266-294.	3.1	86
3	Reducing embodied carbon during the design process of buildings. Journal of Building Engineering, 2015, 4, 1-13.	3.4	78
4	Life cycle assessment of layers of green roofs. Journal of Cleaner Production, 2015, 90, 153-162.	9.3	76
5	The influence of slag content on the microstructure, permeability and mechanical properties of concrete Part 1 Microstructural studies and basic mechanical properties. Cement and Concrete Research, 1993, 23, 407-421.	11.0	67
6	Comfort assessment in the context of sustainable buildings: Comparison of simplified and detailed human thermal sensation methods. Building and Environment, 2014, 71, 60-70.	6.9	65
7	The influence of slag content on the microstructure, permeability and mechanical properties of concrete. Cement and Concrete Research, 1993, 23, 518-530.	11.0	42
8	A new procedure for assessing the energy-efficient refurbishment of buildings on district scale. Sustainable Cities and Society, 2019, 46, 101454.	10.4	40
9	Systematic method for the sustainability analysis of refurbishment concepts of exterior walls. Construction and Building Materials, 2012, 37, 783-790.	7.2	39
10	Experiences with LCA in the Nordic Building Industry – Challenges, Needs and Solutions. Energy Procedia, 2016, 96, 82-93.	1.8	38
11	The role of design management in the sustainable building process. Architectural Engineering and Design Management, 2012, 8, 78-89.	1.7	33
12	Environmental impacts of disposable cups with special focus on the effect of material choices and end of life. Journal of Cleaner Production, 2010, 18, 1458-1463.	9.3	32
13	Impact of renewable energy technologies on the embodied and operational GHG emissions of a nearly zero energy building. Journal of Building Engineering, 2019, 22, 439-450.	3.4	32
14	Reduced carbon footprints of buildings: new Finnish standards and assessments. Buildings and Cities, 2020, 1, 182-197.	2.3	31
15	User engaging practices for energy saving in buildings: Critical review and new enhanced procedure. Energy and Buildings, 2017, 148, 74-88.	6.7	30
16	Feasibility Studies of Energy Retrofits – Case Studies of Nearly Zero-energy Building Renovation. Energy Procedia, 2016, 96, 146-157.	1.8	24
17	Durability considerations of refurbished external walls. Construction and Building Materials, 2014, 53, 162-172.	7.2	21
18	The significance of various factors for GHG emissions of buildings. International Journal of Sustainable Engineering, 2015, 8, 317-330.	3.5	17

Tarja HÃ**r**kinen

#	Article	IF	CITATIONS
19	New trends in sustainability assessment systems – based on top-down approach and stakeholders needs. International Journal of Sustainable Building Technology and Urban Development, 2012, 3, 256-269.	1.0	15
20	Role of Municipal Steering in Sustainable Building and Refurbishment. Energy Procedia, 2016, 96, 650-661.	1.8	10
21	Drivers and benefits for district-scale energy refurbishment. Cities, 2019, 94, 80-95.	5.6	9
22	Principles of GHG emissions assessment of wooden building products. International Journal of Sustainable Building Technology and Urban Development, 2013, 4, 306-317.	1.0	6
23	Lean Production of Cost Optimal Wooden nZEB. Energy Procedia, 2016, 96, 202-211.	1.8	6
24	Usability of energy performance assessment tools for different use purposes with the focus on refurbishment projects. Energy and Buildings, 2016, 127, 217-228.	6.7	6
25	Households' potential to decrease their environmental impacts. International Journal of Energy Sector Management, 2020, 14, 193-212.	2.3	6
26	Seeking sustainable solutions for office buildings. Facilities, 2007, 25, 437-451.	1.6	5
27	The use of LCA studies and LCA outcomes in the decision-making processes of enterprises - discussion and conclusions on the basis of case studies. International Journal of Product Lifecycle Management, 2013, 6, 250.	0.3	4
28	Life-cycle and information management of products â a case study of concrete element industry. International Journal of Product Lifecycle Management, 2011, 5, 253.	0.3	3
29	Combining Building Renovation and Ground Source Heat Pump Installations for the Reduction of Greenhouse Gas Emissions: A Case Study in Vaasa Finland. Journal of Green Building, 2009, 4, 146-168.	0.8	1