
Chetan S Poojari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/753716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science, 2020, 367, 643-652.	12.6	123
2	Structure–phenotype correlations of human CYP21A2 mutations in congenital adrenal hyperplasia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2605-2610.	7.1	107
3	Cryo-EM structure of the complete and ligand-saturated insulin receptor ectodomain. Journal of Cell Biology, 2020, 219, .	5.2	84
4	Structural insights from lipid-bilayer nanodiscs link α-Synuclein membrane-binding modes to amyloid fibril formation. Communications Biology, 2018, 1, 44.	4.4	79
5	<i>doGlycans</i> –Tools for Preparing Carbohydrate Structures for Atomistic Simulations of Glycoproteins, Glycolipids, and Carbohydrate Polymers for GROMACS. Journal of Chemical Information and Modeling, 2017, 57, 2401-2406.	5.4	71
6	How the amyloid-β peptide and membranes affect each other: An extensive simulation study. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 327-339.	2.6	66
7	Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components. ELife, 2017, 6, .	6.0	63
8	Behavior of the DPH fluorescence probe in membranes perturbed by drugs. Chemistry and Physics of Lipids, 2019, 223, 104784.	3.2	47
9	Structural features determining thermal adaptation of esterases. Protein Engineering, Design and Selection, 2016, 29, 65-76.	2.1	46
10	Free energies of membrane stalk formation from a lipidomics perspective. Nature Communications, 2021, 12, 6594.	12.8	41
11	Membrane Permeation Induced by Aggregates of Human Islet Amyloid Polypeptides. Biophysical Journal, 2013, 105, 2323-2332.	0.5	39
12	Computer simulations of protein–membrane systems. Progress in Molecular Biology and Translational Science, 2020, 170, 273-403.	1.7	31
13	Stability of Transmembrane Amyloid β-Peptide and Membrane Integrity Tested by Molecular Modeling of Site-Specific Aβ42 Mutations. PLoS ONE, 2013, 8, e78399.	2.5	27
14	Molecular Modeling on Inhibitor Complexes and Active-Site Dynamics of Cytochrome P450 C17, a Target for Prostate Cancer Therapy. Journal of Molecular Biology, 2010, 400, 1078-1098.	4.2	25
15	Physiologically-relevant levels of sphingomyelin, but not GM1, induces a β-sheet-rich structure in the amyloid-l²(1-42) monomer. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1709-1720.	2.6	22
16	Complexity of seemingly simple lipid nanodiscs. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183420.	2.6	22
17	Molecular Docking Studies of Curcumin Derivatives with Multiple Protein Targets for Procarcinogen Activating Enzyme Inhibition. Journal of Proteomics and Bioinformatics, 2010, 03, 200-203.	0.4	21
18	Effects of Membrane PEGylation on Entry and Location of Antifungal Drug Itraconazole and Their Pharmacological Implications. Molecular Pharmaceutics, 2017, 14, 1057-1070.	4.6	19

CHETAN S POOJARI

#	Article	IF	CITATIONS
19	Cholesteryl Hemisuccinate Is Not a Good Replacement for Cholesterol in Lipid Nanodiscs. Journal of Physical Chemistry B, 2019, 123, 9839-9845.	2.6	18
20	MPI-LIT: a literature-curated dataset of microbial binary protein–protein interactions. Bioinformatics, 2008, 24, 2622-2627.	4.1	15
21	Cholesterol Reduces Partitioning of Antifungal Drug Itraconazole into Lipid Bilayers. Journal of Physical Chemistry B, 2020, 124, 2139-2148.	2.6	12
22	Role of Oxidized Gly25, Gly29, and Gly33 Residues on the Interactions of Aβ _{1–42} with Lipid Membranes. ACS Chemical Neuroscience, 2020, 11, 535-548.	3.5	9
23	Lipid Droplets Embedded in a Model Cell Membrane Create a Phospholipid Diffusion Barrier. Small, 2022, 18, e2106524.	10.0	9
24	Cooperative Effects of an Antifungal Moiety and DMSO on Pore Formation over Lipid Membranes Revealed by Free Energy Calculations. Journal of Physical Chemistry B, 2020, 124, 8811-8821.	2.6	6
25	Is Lipid Specificity Key to the Potential Antiviral Activity of Mouthwash Reagent Chlorhexidine against SARS-CoV-2?. Membranes, 2022, 12, 616.	3.0	2
26	Itraconazole Perturbs Behavior of Fluorescent Probes in Lipid Bilayer. Biophysical Journal, 2019, 116, 81a.	0.5	0
27	New Paradigms for the Mechanisms of Thrombopoietin Receptor Activation and Dysregulation By the JAK2V617F Mutation. Blood, 2019, 134, 2962-2962.	1.4	ο