Zahra Nasiri-Gheidari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7536969/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generalized Nonoverlapping Tooth Coil Winding Method for Variable Reluctance Resolvers. IEEE Transactions on Industrial Electronics, 2022, 69, 5325-5332.	7.9	13
2	Winding Function Model for Predicting Performance of 2-DOF Wound Rotor Resolver. IEEE Transactions on Transportation Electrification, 2022, 8, 2062-2069.	7.8	8
3	Optimal Design and Performance Analysis of a Double-Sided Multiturn Wound-Rotor Resolver. IEEE/ASME Transactions on Mechatronics, 2022, 27, 493-500.	5.8	7
4	Slotless Disk Type Resolver: A Solution to Improve the Accuracy of Multi-Speed Wound Rotor Resolvers. IEEE Transactions on Transportation Electrification, 2022, 8, 1493-1500.	7.8	9
5	Improved Design of an Outer Rotor Six-Phase Induction Motor With Variable Turn Pseudo-Concentrated Windings. IEEE Transactions on Energy Conversion, 2022, 37, 1020-1029.	5.2	2
6	Presentation of a Novel Variable Reluctance Tubular Resolver. IEEE Transactions on Industrial Electronics, 2022, 69, 13773-13780.	7.9	9
7	Helical Motion Wound-Rotor Resolver. IEEE Sensors Journal, 2022, 22, 9371-9377.	4.7	5
8	A High-Accuracy Two-Stage Deep Learning-Based Resolver to Digital Converter. , 2022, , .		4
9	Performance Analysis of Outer-Rotor Single-Phase Induction Motor Based on Magnetic Equivalent Circuit. IEEE Transactions on Industrial Electronics, 2021, 68, 1046-1054.	7.9	28
10	Modeling, Performance Analyzing, and Prototyping of Variable Reluctance Resolver With Toroidal Winding. IEEE Sensors Journal, 2021, 21, 4425-4432.	4.7	14
11	Static Eccentricity Fault Diagnosis in Wound-Rotor Resolvers. IEEE Sensors Journal, 2021, 21, 1424-1432.	4.7	11
12	Magnetic Equivalent Circuit Model for Predicting Performance of 2DOF Wound Rotor Resolver. IEEE Sensors Journal, 2021, 21, 21417-21424.	4.7	8
13	Accurate and Fast Subdomain Model for Electromagnetic Design Purpose of Wound-Field Linear Resolver. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	4.7	17
14	Development of a Hybrid Reference Model for Performance Evaluation of Resolvers. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	4.7	15
15	Proposal of a 2DOF Wound-Rotor Resolver. IEEE Sensors Journal, 2021, 21, 18633-18640.	4.7	13
16	Simplified Winding Arrangement for Integrated Multiturn Resolvers. IEEE Transactions on Industrial Electronics, 2021, 68, 12802-12809.	7.9	11
17	A Reliable Integrated Resolver for High Precision Radial-Linear Position Measurement. , 2021, , .		6
18	A New Variable Reluctance PM-Resolver, IFFF Sensors Journal, 2020, 20, 135-142,	4.7	43

2

Zahra Nasiri-Gheidari

#	Article	IF	CITATIONS
19	Design and Prototyping of a Multi-Turn Sinusoidal Air-Gap Length Resolver. IEEE Transactions on Energy Conversion, 2020, 35, 271-278.	5.2	17
20	Development of a Three-Dimensional Magnetic Equivalent Circuit Model for Axial Flux Machines. IEEE Transactions on Industrial Electronics, 2020, 67, 5758-5767.	7.9	47
21	Subdomain Model for Predicting the Performance of Linear Resolver Considering End Effect and Slotting Effect. IEEE Sensors Journal, 2020, 20, 14747-14755.	4.7	17
22	Optimal design of a flux reversal permanent magnet machine as a wind turbinegenerator. Turkish Journal of Electrical Engineering and Computer Sciences, 2020, 28, 693-707.	1.4	2
23	Improvement of Concentrated Winding Layouts for Six-Phase Squirrel Cage Induction Motors. IEEE Transactions on Energy Conversion, 2020, 35, 1727-1735.	5.2	15
24	Structural Design and Analysis of a High Reliability Multi-Turn Wound-Rotor Resolver for Electric Vehicle. IEEE Transactions on Vehicular Technology, 2020, 69, 4992-4999.	6.3	16
25	Influence of Different Installation Configurations on the Position Error of a Multiturn Wound-Rotor Resolver. IEEE Sensors Journal, 2020, 20, 5785-5792.	4.7	15
26	Online Static/Dynamic Eccentricity Fault Diagnosis in Inverter-Driven Electrical Machines Using Resolver Signals. IEEE Transactions on Energy Conversion, 2020, 35, 1973-1980.	5.2	19
27	Study of Noise and Vibration in Wound Rotor Resolvers. , 2020, , .		6
28	Design of a Six-Phase Squirrel Cage Induction Motor with Pseudo-Concentrated Windings. , 2020, , .		2
29	Condition Monitoring of Wound Rotor Resolvers. , 2020, , .		3
30	A Comprehensive Analysis of Short-Circuit Fault in Wound-Rotor Resolvers. IEEE Transactions on Vehicular Technology, 2020, 69, 14884-14892.	6.3	9
31	Improved Winding Proposal for Wound Rotor Resolver Using Genetic Algorithm and Winding Function Approach. IEEE Transactions on Industrial Electronics, 2019, 66, 1325-1334.	7.9	53
32	Proposal of an Analytical Model for Performance Evaluation of WR -Resolvers under Short Circuit Fault. , 2019, , .		4
33	Selection of Excitation Signal Waveform for Improved Performance of Wound-Rotor Resolver*. , 2019, , \cdot		2
34	Design Considerations of Multi-Turn Wound-Rotor Resolvers*. , 2019, , .		6
35	Accuracy Improvement in Variable Reluctance Resolvers. IEEE Transactions on Energy Conversion, 2019, 34, 1563-1571.	5.2	17
36	Proposal of Winding Function Model for Geometrical Optimization of Linear Sinusoidal Area Resolvers. IEEE Sensors Journal, 2019, 19, 5506-5513.	4.7	27

Zahra Nasiri-Gheidari

#	Article	IF	CITATIONS
37	Design Optimization of a Double-Stage Resolver. IEEE Transactions on Vehicular Technology, 2019, 68, 5407-5415.	6.3	15
38	The effect of winding arrangements on measurement accuracy of sinusoidal rotor resolver under fault conditions. Measurement: Journal of the International Measurement Confederation, 2019, 131, 162-172.	5.0	25
39	Challenges of Finite Element Analysis of Resolvers. IEEE Transactions on Energy Conversion, 2019, 34, 973-983.	5.2	28
40	Optimal Winding Selection for Wound-Rotor Resolvers. Scientia Iranica, 2019, .	0.4	4
41	Design-Oriented Modelling of Axial-Flux Variable-Reluctance Resolver Based on Magnetic Equivalent Circuits and Schwarz–Christoffel Mapping. IEEE Transactions on Industrial Electronics, 2018, 65, 4322-4330.	7.9	61
42	Ultra low vibration and low acoustic noise multi-stage switched reluctance machine. , 2018, , .		5
43	Performance Analysis of Linear Variable Reluctance Resolvers Based on an Improved Winding Function Approach. IEEE Transactions on Energy Conversion, 2018, 33, 1422-1430.	5.2	52
44	Design Improvement of a Small, Outer Rotor, Permanent Magnet Vernier Generator for Supplying Traffic Enforcement Camera. IEEE Transactions on Energy Conversion, 2018, 33, 1213-1221.	5.2	15
45	Longitudinal End Effect in a Variable Area Linear Resolver and its Compensating Methods. , 2018, , .		20
46	Analysis of Six-Phase Induction Motor with Distributed and Concentrated Windings by Using the Winding Function Method. , 2018, , .		6
47	Linearized Resolver. , 2018, , .		4
48	Magnetic Equivalent Circuit Model for Wound Rotor Resolver Without Rotary Transformer's Core. IEEE Sensors Journal, 2018, 18, 8693-8700.	4.7	25
49	Analysis of winding arrangement on position error of axial flux wound-rotor resolver. , 2018, , .		5
50	Effects of Physical Parameters on the Accuracy of Axial Flux Resolvers. IEEE Transactions on Magnetics, 2017, 53, 1-11.	2.1	34
51	Influence of mechanical faults on the position error of an axial flux brushless resolver without rotor windings. IET Electric Power Applications, 2017, 11, 613-621.	1.8	16
52	Analysis of Winding Configurations and Slot-Pole Combinations in Fractional-Slots Resolvers. IEEE Sensors Journal, 2017, 17, 4420-4428.	4.7	32
53	Performance Evaluation of Disk Type Variable Reluctance Resolvers. IEEE Sensors Journal, 2017, 17, 4037-4045.	4.7	26
54	Twelveâ€slot twoâ€saliency variable reluctance resolver with nonâ€overlapping signal windings and axial flux excitation. IET Electric Power Applications, 2017, 11, 49-62.	1.8	26

ZAHRA NASIRI-GHEIDARI

#	Article	IF	CITATIONS
55	Design oriented technique for mitigating position error due to shaft runâ€out in sinusoidalâ€rotor variable reluctance resolvers. IET Electric Power Applications, 2017, 11, 132-141.	1.8	37
56	The influence of different configurations on position error of linear variable reluctance resolvers. , 2017, , .		17
57	Design, Performance Analysis, and Prototyping of Linear Resolvers. IEEE Transactions on Energy Conversion, 2017, 32, 1376-1385.	5.2	32
58	Design, Analysis, and Prototyping of a New Wound-Rotor Axial Flux Brushless Resolver. IEEE Transactions on Energy Conversion, 2017, 32, 276-283.	5.2	35
59	Position error calculation of linear resolver under mechanical fault conditions. IET Science, Measurement and Technology, 2017, 11, 948-954.	1.6	36
60	Analytical model for performance prediction of linear resolver. IET Electric Power Applications, 2017, 11, 1457-1465.	1.8	28
61	Performance Analysis of Concentrated Wound-Rotor Resolver for Its Applications in High Pole Number Permanent Magnet Motors. IEEE Sensors Journal, 2017, 17, 7877-7885.	4.7	43
62	The influence of winding's pole pairs on position error of linear resolvers. , 2017, , .		3
63	Cogging force mitigation techniques in a modular linear permanent magnet motor. IET Electric Power Applications, 2016, 10, 667-674.	1.8	16
64	An optimized axial flux variable reluctance resolver with concentric windings. , 2016, , .		7
65	Electromagnetic Design Optimization of a Modular Linear Flux-reversal Motor. Electric Power Components and Systems, 2016, 44, 2112-2120.	1.8	4
66	Design, analysis, and implementation of extra low air-gap single-phase axial-flux induction motors for low-cost applications. International Transactions on Electrical Energy Systems, 2016, 26, 2516-2531.	1.9	3
67	Axial Flux Resolver Design Techniques for Minimizing Position Error Due to Static Eccentricities. IEEE Sensors Journal, 2015, 15, 4027-4034.	4.7	49
68	Design Optimization of a Ladder Secondary Single-Sided Linear Induction Motor for Improved Performance. IEEE Transactions on Energy Conversion, 2015, 30, 1595-1603.	5.2	41
69	Theoretical modeling of axial flux squirrel cage induction motor considering both saturation and anisotropy. International Transactions on Electrical Energy Systems, 2014, 24, 335-346.	1.9	6
70	Optimal Design of Adjustable Air-Gap, Two-Speed, Capacitor-Run, Single-Phase Axial Flux Induction Motors. IEEE Transactions on Energy Conversion, 2013, 28, 543-552.	5.2	36
71	Using stator discharge current for the parameter estimation of a single-phase axial flux induction motor. Scientia Iranica, 2012, 19, 1794-1801.	0.4	4
72	Application of an imperialist competitive algorithm to the design of a linear induction motor. Energy Conversion and Management, 2010, 51, 1407-1411.	9.2	133

#	Article	IF	CITATIONS
73	Improving the performance of helical motion resolver based onÂaccurate modelling of longitudinal end effect. IET Electric Power Applications, 0, , .	1.8	0