Michael J Griffin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7536870/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of train speed and track geometry on the ride comfort in high-speed railways based on ISO 2631-1. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234, 765-778.	1.3	22
2	Effects of seating on the discomfort caused by mechanical shocks: Measurement and prediction of SEAT values. Applied Ergonomics, 2019, 74, 134-144.	1.7	11
3	Postural Stability When Walking and Exposed to Mediolateral Oscillatory Motion: Effect of Oscillation Waveform. Journal of Applied Biomechanics, 2019, 35, 131-139.	0.3	1
4	Fore-and-aft and dual-axis vibration of the seated human body: Nonlinearity, cross-axis coupling, and associations between resonances in the transmissibility and apparent mass. International Journal of Industrial Ergonomics, 2019, 69, 58-65.	1.5	22
5	Transmission of vibration through glove materials: effects of contact force. Ergonomics, 2018, 61, 1246-1258.	1.1	11
6	Assessment of thermotactile and vibrotactile thresholds for detecting sensorineural components of the hand–arm vibration syndrome (HAVS). International Archives of Occupational and Environmental Health, 2018, 91, 35-45.	1.1	11
7	Frequency-dependence of discomfort caused by vibration and mechanical shocks. Ergonomics, 2018, 61, 1102-1115.	1.1	10
8	Measuring, evaluating and assessing the transmission of vibration through the seats of railway vehicles. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 384-395.	1.3	16
9	Equivalent comfort contours for fore-and-aft, lateral, and vertical whole-body vibration in the frequency range 1.0 to 10 Hz. Ergonomics, 2018, 61, 1545-1559.	1.1	8
10	Measuring vibration-induced variations in pressures between the human body and a seat. International Journal of Industrial Ergonomics, 2018, 67, 274-282.	1.5	6
11	Response of the seated human body to whole-body vertical vibration: biodynamic responses to mechanical shocks. Ergonomics, 2017, 60, 333-346.	1.1	11
12	Transmission of vibration through gloves: effects of contact area. Ergonomics, 2017, 60, 69-81.	1.1	12
13	Response of the seated human body to whole-body vertical vibration: discomfort caused by mechanical shocks. Ergonomics, 2017, 60, 347-357.	1.1	19
14	Effect of room temperature on tests for diagnosing vibration-induced white finger: finger rewarming times and finger systolic blood pressures. International Archives of Occupational and Environmental Health, 2017, 90, 527-538.	1.1	6
15	Dynamic forces over the interface between a seated human body and a rigid seat during vertical whole-body vibration. Journal of Biomechanics, 2017, 61, 176-182.	0.9	22
16	Is the infant car seat challenge useful? A pilot study in a simulated moving vehicle. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2017, 102, F136-F141.	1.4	4
17	Assessment of two alternative standardised tests for the vascular component of the hand–arm vibration syndrome (HAVS). Occupational and Environmental Medicine, 2016, 73, 701-708.	1.3	12
18	Transmission of vibration through gloves: effects of material thickness. Ergonomics, 2016, 59, 1026-1037.	1.1	21

#	Article	IF	CITATIONS
19	Discomfort of seated persons exposed to low frequency lateral and roll oscillation: Effect of backrest height. Applied Ergonomics, 2016, 54, 51-61.	1.7	17
20	Higher body fat percentage is associated with enhanced temperature perception in NAFLD: results from the randomised Wessex Evaluation of fatty Liver and Cardiovascular markers in NAFLD with OMacor thErapy trial (WELCOME) trial. Diabetologia, 2016, 59, 1422-1429.	2.9	6
21	Reductions in finger blood flow induced by 125-Hz vibration: effect of location of contact with vibration. International Archives of Occupational and Environmental Health, 2016, 89, 425-433.	1.1	8
22	Ocular vestibular evoked myogenic potentials elicited with vibration applied to the teeth. Clinical Neurophysiology, 2016, 127, 833-841.	0.7	2
23	Transmission of fore-and-aft vibration to the seat pan, the backrest and the headrest of a car seat. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2016, 230, 736-744.	1.1	3
24	Evaluation of Floor Vibrations Induced by Walking Barefoot in Heavyweight Buildings. Acta Acustica United With Acustica, 2015, 101, 1199-1210.	0.8	2
25	Finite element modelling of human-seat interactions: vertical in-line and fore-and-aft cross-axis apparent mass when sitting on a rigid seat without backrest and exposed to vertical vibration. Ergonomics, 2015, 58, 1207-1219.	1.1	28
26	Effect of reclining a seat on the discomfort from vibration and shock on fast boats. Ergonomics, 2015, 58, 1151-1161.	1.1	3
27	Predicting and controlling risks from human exposures to vibration and mechanical shock: flag waving and flag weaving. Ergonomics, 2015, 58, 1063-1070.	1.1	6
28	Impact of high dose n-3 polyunsaturated fatty acid treatment on measures of microvascular function and vibration perception in non-alcoholic fatty liver disease: results from the randomised WELCOME trial. Diabetologia, 2015, 58, 1916-1925.	2.9	18
29	Masking of thresholds for the perception of fore-and-aft vibration of seat backrests. Applied Ergonomics, 2015, 50, 200-206.	1.7	2
30	Transmission of vertical vibration through a seat: Effect of thickness of foam cushions at the seat pan and the backrest. International Journal of Industrial Ergonomics, 2015, 48, 36-45.	1.5	38
31	Reduction in finger blood flow induced by hand-transmitted vibration: effect of hand elevation. International Archives of Occupational and Environmental Health, 2015, 88, 981-992.	1.1	9
32	The vibration discomfort of standing people: evaluation of multi-axis vibration. Ergonomics, 2015, 58, 1647-1659.	1.1	3
33	Postural stability when walking and exposed to lateral oscillatory motion: benefits from hand supports. Ergonomics, 2015, 58, 291-300.	1.1	1
34	Developing a simplified finite element model of a car seat with occupant for predicting vibration transmissibility in the vertical direction. Ergonomics, 2015, 58, 1220-1231.	1.1	34
35	Dupuytren's contracture and occupational exposure to hand-transmitted vibration. Occupational and Environmental Medicine, 2014, 71, 241-245.	1.3	36
36	The discomfort produced by noise and whole-body vertical vibration presented separately and in combination. Ergonomics, 2014, 57, 1724-1738.	1.1	30

#	Article	IF	CITATIONS
37	Motion sickness caused by roll-compensated lateral acceleration: Effects of centre-of-rotation and subject demographics. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228, 16-24.	1.3	5
38	Association between vasoconstriction during and following exposure to hand-transmitted vibration. International Archives of Occupational and Environmental Health, 2014, 87, 41-49.	1.1	7
39	Response of the seated human body to whole-body vertical vibration: discomfort caused by sinusoidal vibration. Ergonomics, 2014, 57, 714-732.	1.1	29
40	Response of the seated human body to whole-body vertical vibration: biodynamic responses to sinusoidal and random vibration. Ergonomics, 2014, 57, 693-713.	1.1	32
41	Discomfort of seated persons exposed to low frequency lateral and roll oscillation: Effect of seat cushion. Applied Ergonomics, 2014, 45, 1547-1557.	1.7	13
42	Relation between vibrotactile perception thresholds and reductions in finger blood flow induced by vibration of the hand at frequencies in the range 8–250ÂHz. European Journal of Applied Physiology, 2014, 114, 1591-1603.	1.2	10
43	The relative discomfort of noise and vibration: effects of stimulus duration. Ergonomics, 2014, 57, 1244-1255.	1.1	17
44	The application of SEAT values for predicting how compliant seats with backrests influence vibration discomfort. Applied Ergonomics, 2014, 45, 1461-1474.	1.7	25
45	Comparison of absolute magnitude estimation and relative magnitude estimation for judging the subjective intensity of noise and vibration. Applied Acoustics, 2014, 77, 82-88.	1.7	24
46	Postural stability when walking: Effect of the frequency and magnitude of lateral oscillatory motion. Applied Ergonomics, 2014, 45, 293-299.	1.7	12
47	Reductions in finger blood flow induced by 125-Hz vibration: effect of area of contact with vibration. European Journal of Applied Physiology, 2013, 113, 1017-1026.	1.2	6
48	Discomfort during lateral acceleration: Influence of seat cushion and backrest. Applied Ergonomics, 2013, 44, 588-594.	1.7	28
49	Spatial summation of vibrotactile sensations at the foot. Medical Engineering and Physics, 2013, 35, 1221-1227.	0.8	10
50	Combined effect of noise and vibration produced by high-speed trains on annoyance in buildings. Journal of the Acoustical Society of America, 2013, 133, 2126-2135.	0.5	37
51	Predicting discomfort from whole-body vertical vibration when sitting with an inclined backrest. Applied Ergonomics, 2013, 44, 423-434.	1.7	51
52	Nonlinearity in the vertical transmissibility of seating: the role of the human body apparent mass and seat dynamic stiffness. Vehicle System Dynamics, 2013, 51, 122-138.	2.2	42
53	Discomfort caused by low-frequency lateral oscillation, roll oscillation and roll-compensated lateral oscillation. Ergonomics, 2013, 56, 103-114.	1.1	19
54	The effects of sound level and vibration magnitude on the relative discomfort of noise and vibration. Journal of the Acoustical Society of America, 2012, 131, 4558-4569.	0.5	25

#	Article	IF	CITATIONS
55	Biodynamic Response of the Seated Human Body to Single-axis and Dual-axis Vibration: Effect of Backrest and Non-linearity. Industrial Health, 2012, 50, 37-51.	0.4	26
56	Contributions of ocular vestibular evoked myogenic potentials and the electrooculogram to periocular potentials produced by whole-body vibration. Journal of Applied Physiology, 2012, 113, 1613-1623.	1.2	13
57	Equivalent comfort contours for vertical seat vibration: effect of vibration magnitude and backrest inclination. Ergonomics, 2012, 55, 909-922.	1.1	31
58	Vertical and dual-axis vibration of the seated human body: Nonlinearity, cross-axis coupling, and associations between resonances in transmissibility and apparent mass. Journal of Sound and Vibration, 2012, 331, 5880-5894.	2.1	26
59	Vibrotactile difference thresholds: Effects of vibration frequency, vibration magnitude, contact area, and body location. Somatosensory & Motor Research, 2012, 29, 28-37.	0.4	5
60	Frequency-dependence of Psychophysical and Physiological Responses to Hand-transmitted Vibration. Industrial Health, 2012, 50, 354-369.	0.4	36
61	Acute effects of mechanical shocks on finger blood flow: influence of shock repetition rate and shock magnitude. International Archives of Occupational and Environmental Health, 2012, 85, 605-614.	1.1	7
62	The vibration discomfort of standing people: Relative importance of fore-and-aft, lateral, and vertical vibration. Applied Ergonomics, 2012, 43, 902-908.	1.7	10
63	Power absorbed during whole-body fore-and-aft vibration: Effects of sitting posture, backrest, and footrest. Journal of Sound and Vibration, 2012, 331, 252-262.	2.1	4
64	Vibrotactile perception thresholds at the sole of the foot: Effects of contact force and probe indentation. Medical Engineering and Physics, 2012, 34, 447-452.	0.8	4
65	Professional driving and prolapsed lumbar intervertebral disc diagnosed by magnetic resonance imaging: a case–control study. Scandinavian Journal of Work, Environment and Health, 2012, 38, 577-581.	1.7	14
66	Modelling the fore-and-aft apparent mass of the human body and the transmissibility of seat backrests. Vehicle System Dynamics, 2011, 49, 703-722.	2.2	30
67	Reductions in finger blood flow in men and women induced by 125-Hz vibration: association with vibration perception thresholds. Journal of Applied Physiology, 2011, 111, 1606-1613.	1.2	12
68	An analytic model of the in-line and cross-axis apparent mass of the seated human body exposed to vertical vibration with and without a backrest. Journal of Sound and Vibration, 2011, 330, 6509-6525.	2.1	46
69	The transmission of vertical vibration through seats: Influence of the characteristics of the human body. Journal of Sound and Vibration, 2011, 330, 6526-6543.	2.1	69
70	Effects of temperature on reductions in finger blood flow induced by vibration. International Archives of Occupational and Environmental Health, 2011, 84, 315-323.	1.1	13
71	Difference thresholds for vibration of the foot: Dependence on frequency and magnitude of vibration. Journal of Sound and Vibration, 2011, 330, 805-815.	2.1	3
72	The vibration discomfort of standing persons: 0.5–16-Hz fore-and-aft, lateral, and vertical vibration. Journal of Sound and Vibration, 2011, 330, 816-826.	2.1	29

#	Article	IF	CITATIONS
73	Apparent mass of the human body in the vertical direction: Inter-subject variability. Journal of Sound and Vibration, 2011, 330, 827-841.	2.1	34
74	The horizontal apparent mass of the standing human body. Journal of Sound and Vibration, 2011, 330, 3284-3297.	2.1	15
75	The vibration of inclined backrests: perception and discomfort of vibration applied normal to the back in the x-axis of the body. Journal of Sound and Vibration, 2011, 330, 4646-4659.	2.1	18
76	The vibration discomfort of standing persons: evaluation of random and transient motions. Ergonomics, 2011, 54, 1228-1239.	1.1	11
77	The vibration of inclined backrests: perception and discomfort of vibration applied parallel to the back in the z-axis of the body. Ergonomics, 2011, 54, 1214-1227.	1.1	11
78	The transmission of vibration through gloves: effects of push force, vibration magnitude and inter-subject variability. Ergonomics, 2011, 54, 488-496.	1.1	22
79	Vibrotactile thresholds at the sole of the foot: Effect of vibration frequency and contact location. Somatosensory & Motor Research, 2011, 28, 86-93.	0.4	8
80	Motion Sickness with Combined Lateral and Roll Oscillation: Effect of Percentage Compensation. Aviation, Space, and Environmental Medicine, 2010, 81, 22-29.	0.6	10
81	Frequency Weightings for Fore-and-aft Vibration at the Back: Effect of Contact Location, Contact Area, and Body Posture. Industrial Health, 2010, 48, 538-549.	0.4	14
82	Biodynamic Responses of the Seated Human Body to Single-axis and Dual-axis Vibration. Industrial Health, 2010, 48, 615-627.	0.4	36
83	A Variable Parameter Single Degree-of-freedom Model for Predicting the Effects of Sitting Posture and Vibration Magnitude on the Vertical Apparent Mass of the Human Body. Industrial Health, 2010, 48, 654-662.	0.4	13
84	Apparent mass of the human body in the vertical direction: Effect of a footrest and a steering wheel. Journal of Sound and Vibration, 2010, 329, 1586-1596.	2.1	25
85	Power absorbed during whole-body vertical vibration: Effects of sitting posture, backrest, and footrest. Journal of Sound and Vibration, 2010, 329, 2928-2938.	2.1	20
86	Magnitude-dependence of equivalent comfort contours for fore-and-aft, lateral, and vertical vibration at the foot for seated persons. Journal of Sound and Vibration, 2010, 329, 2939-2952.	2.1	18
87	Thermotactile thresholds at the fingertip: Effect of contact area and contact location. Somatosensory & Motor Research, 2010, 27, 82-92.	0.4	6
88	Difference thresholds for the perception of whole-body vertical vibration: dependence on the frequency and magnitude of vibration. Ergonomics, 2009, 52, 1305-1310.	1.1	18
89	Effect of the magnitude and frequency of hand-transmitted vibration on finger blood flow during and after exposure to vibration. International Archives of Occupational and Environmental Health, 2009, 82, 1151-1162.	1.1	22
90	A model of the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the human body during vertical whole-body vibration. Journal of Sound and Vibration, 2009, 319, 719-730.	2.1	58

#	Article	IF	CITATIONS
91	Nonlinear subjective and dynamic responses of seated subjects exposed to horizontal whole-body vibration. Journal of Sound and Vibration, 2009, 321, 416-434.	2.1	36
92	Nonlinearity in apparent mass and transmissibility of the supine human body during vertical whole-body vibration. Journal of Sound and Vibration, 2009, 324, 429-452.	2.1	31
93	Discomfort from sinusoidal oscillation in the pitch and fore-and-aft axes at frequencies between 0.2 and 1.6Hz. Journal of Sound and Vibration, 2009, 324, 453-467.	2.1	18
94	The apparent mass and mechanical impedance of the hand and the transmission of vibration to the fingers, hand, and arm. Journal of Sound and Vibration, 2009, 325, 664-678.	2.1	35
95	Apparent mass of the human body in the vertical direction: Effect of seat backrest. Journal of Sound and Vibration, 2009, 327, 657-669.	2.1	36
96	Equivalent comfort contours for vertical vibration of steering wheels: Effect of vibration magnitude, grip force, and hand position. Applied Ergonomics, 2009, 40, 817-825.	1.7	19
97	Motions and crew responses on an offshore oil production and storage vessel. Applied Ergonomics, 2009, 40, 904-914.	1.7	37
98	Motion Sickness with Combined Fore-Aft and Pitch Oscillation: Effect of Phase and the Visual Scene. Aviation, Space, and Environmental Medicine, 2009, 80, 946-954.	0.6	10
99	Motion Sickness with Fully Roll-Compensated Lateral Oscillation: Effect of Oscillation Frequency. Aviation, Space, and Environmental Medicine, 2009, 80, 94-101.	0.6	17
100	Negligent exposures to hand-transmitted vibration. International Archives of Occupational and Environmental Health, 2008, 81, 645-659.	1.1	10
101	Normal values for thermotactile and vibrotactile thresholds in males and females. International Archives of Occupational and Environmental Health, 2008, 81, 535-543.	1.1	42
102	Measurement, evaluation, and assessment of peripheral neurological disorders caused by hand-transmitted vibration. International Archives of Occupational and Environmental Health, 2008, 81, 559-573.	1.1	31
103	Normal values for finger systolic blood pressures in males and females. International Archives of Occupational and Environmental Health, 2008, 81, 625-632.	1.1	7
104	New understanding of the diagnosis of injuries caused by hand-transmitted vibration. International Archives of Occupational and Environmental Health, 2008, 81, 505-505.	1.1	5
105	Effects of frequency, magnitude, damping, and direction on the discomfort of vertical whole-body mechanical shocks. Journal of Sound and Vibration, 2008, 311, 485-497.	2.1	29
106	Nonlinear dual-axis biodynamic response of the semi-supine human body during vertical whole-body vibration, 2008, 312, 296-315.	2.1	33
107	Nonlinear dual-axis biodynamic response of the semi-supine human body during longitudinal horizontal whole-body vibration. Journal of Sound and Vibration, 2008, 312, 273-295.	2.1	18
108	Absolute thresholds for the perception of fore-and-aft, lateral, and vertical vibration at the hand, the seat, and the foot. Journal of Sound and Vibration, 2008, 314, 357-370.	2.1	56

#	Article	IF	CITATIONS
109	Modelling resonances of the standing body exposed to vertical whole-body vibration: Effects of posture. Journal of Sound and Vibration, 2008, 317, 400-418.	2.1	48
110	Fore-and-aft apparent mass of the back: Nonlinearity and variation with vertical location. Journal of Sound and Vibration, 2008, 318, 1348-1363.	2.1	15
111	Vibrotactile thresholds at the fingertip, volar forearm, large toe, and heel. Somatosensory & Motor Research, 2008, 25, 101-112.	0.4	61
112	Motion Sickness: Effect of Changes in Magnitude of Combined Lateral and Roll Oscillation. Aviation, Space, and Environmental Medicine, 2008, 79, 1019-1027.	0.6	9
113	Motion Sickness: Effect of the Magnitude of Roll and Pitch Oscillation. Aviation, Space, and Environmental Medicine, 2008, 79, 390-396.	0.6	21
114	Case–control study of low-back pain referred for magnetic resonance imaging, with special focus on whole-body vibration. Scandinavian Journal of Work, Environment and Health, 2008, 34, 364-373.	1.7	24
115	Discomfort from sinusoidal oscillation in the roll and lateral axes at frequencies between 0.2 and 1.6Hz. Journal of the Acoustical Society of America, 2007, 121, 2644-2654.	0.5	27
116	Motion Sickness from Combined Lateral and Roll Oscillation: Effect of Varying Phase Relationships. Aviation, Space, and Environmental Medicine, 2007, 78, 944-950.	0.6	27
117	Frequency dependence of perceived intensity of steering wheel vibration: effect of grip force. , 2007, , .		5
118	Discomfort from feeling vehicle vibration. Vehicle System Dynamics, 2007, 45, 679-698.	2.2	172
119	Fore-and-aft transmissibility of backrests: Effect of backrest inclination, seat-pan inclination, and measurement location. Journal of Sound and Vibration, 2007, 299, 99-108.	2.1	13
120	Fore-and-aft transmissibility of backrests: Variation with height above the seat surface and non-linearity. Journal of Sound and Vibration, 2007, 299, 109-122.	2.1	21
121	Effect of prior exposure to hand-transmitted vibration on cold response of digital arteries. International Archives of Occupational and Environmental Health, 2007, 80, 281-289.	1.1	1
122	Nonlinearity of Biodynamic Response to Shock-Type Vertical Whole-Body Vibration. Transactions of the Korean Society of Mechanical Engineers, A, 2007, 31, 145-151.	0.1	2
123	Effect of contact location on vibrotactile thresholds at the fingertip. Somatosensory & Motor Research, 2006, 23, 73-81.	0.4	11
124	Vibration and Motion. , 2006, , 590-611.		1
125	Apparent mass and cross-axis apparent mass of standing subjects during exposure to vertical whole-body vibration. Journal of Sound and Vibration, 2006, 293, 78-95.	2.1	32
126	Magnitude-dependence of equivalent comfort contours for fore-and-aft, lateral and vertical hand-transmitted vibration. Journal of Sound and Vibration, 2006, 295, 633-648.	2.1	52

#	Article	IF	CITATIONS
127	Magnitude-dependence of equivalent comfort contours for fore-and-aft, lateral and vertical whole-body vibration. Journal of Sound and Vibration, 2006, 298, 755-772.	2.1	77
128	Low back pain in car drivers: A review of studies published 1975 to 2005. Journal of Sound and Vibration, 2006, 298, 499-513.	2.1	33
129	Effect of frequency, magnitude and direction of translational and rotational oscillation on the postural stability of standing people. Journal of Sound and Vibration, 2006, 298, 725-754.	2.1	26
130	Effect of voluntary periodic muscular activity on nonlinearity in the apparent mass of the seated human body during vertical random whole-body vibration. Journal of Sound and Vibration, 2006, 298, 824-840.	2.1	21
131	Acute effects of force and vibration on finger blood flow. Occupational and Environmental Medicine, 2006, 63, 84-91.	1.3	36
132	Acute response of finger circulation to force and vibration applied to the palm of the hand. Scandinavian Journal of Work, Environment and Health, 2006, 32, 383-391.	1.7	22
133	Tri-axial forces at the seat and backrest during whole-body fore-and-aft vibration. Journal of Sound and Vibration, 2005, 281, 921-942.	2.1	41
134	Non-linear dual-axis biodynamic response to fore-and-aft whole-body vibration. Journal of Sound and Vibration, 2005, 282, 831-862.	2.1	61
135	Effect of seat surface angle on forces at the seat surface during whole-body vertical vibration. Journal of Sound and Vibration, 2005, 284, 613-634.	2.1	27
136	Nonlinear subjective and biodynamic responses to continuous and transient whole-body vibration in the vertical direction. Journal of Sound and Vibration, 2005, 287, 919-937.	2.1	26
137	Transmission of roll, pitch and yaw vibration to the backrest of a seat supported on a non-rigid car floor. Journal of Sound and Vibration, 2005, 288, 1197-1222.	2.1	22
138	Thresholds for the perception of hand-transmitted vibration: Dependence on contact area and contact location. Somatosensory & Motor Research, 2005, 22, 281-297.	0.4	80
139	Independent responses of Pacinian and Non-Pacinian systems with hand-transmitted vibration detected from masked thresholds. Somatosensory & Motor Research, 2005, 22, 69-84.	0.4	17
140	Cigarette smoking, occupational exposure to noise, and self reported hearing difficulties. Occupational and Environmental Medicine, 2004, 61, 340-344.	1.3	55
141	Minimum health and safety requirements for workers exposed to hand-transmitted vibration and whole-body vibration in the European Union; a review. Occupational and Environmental Medicine, 2004, 61, 387-397.	1.3	96
142	Acute effects of continuous and intermittent vibration on finger circulation. International Archives of Occupational and Environmental Health, 2004, 77, 255-263.	1.1	30
143	Transmission of vibration to the backrest of a car seat evaluated with multi-input models. Journal of Sound and Vibration, 2004, 274, 297-321.	2.1	32
144	Tri-axial forces at the seat and backrest during whole-body vertical vibration. Journal of Sound and Vibration, 2004, 277, 309-326.	2.1	54

#	Article	IF	CITATIONS
145	A comparison of two methods of simulating seat suspension dynamic performance. Journal of Sound and Vibration, 2004, 278, 117-134.	2.1	47
146	Visual field effects on motion sickness in cars. Aviation, Space, and Environmental Medicine, 2004, 75, 739-48.	0.6	28
147	Normative vibrotactile thresholds measured at five European test centres. International Archives of Occupational and Environmental Health, 2003, 76, 517-528.	1.1	22
148	Mathematical models for the apparent masses of standing subjects exposed to vertical whole-body vibration. Journal of Sound and Vibration, 2003, 260, 431-451.	2.1	119
149	Transmission of fore–aft vibration to a car seat using field tests and laboratory simulation. Journal of Sound and Vibration, 2003, 264, 135-155.	2.1	40
150	Non-linear dual-axis biodynamic response to vertical whole-body vibration. Journal of Sound and Vibration, 2003, 268, 503-523.	2.1	86
151	Dose-response patterns for vibration-induced white finger. Occupational and Environmental Medicine, 2003, 60, 16-26.	1.3	126
152	The relative importance of whole body vibration and occupational lifting as risk factors for low-back pain. Occupational and Environmental Medicine, 2003, 60, 715-721.	1.3	64
153	Occupational exposure to noise and the attributable burden of hearing difficulties in Great Britain. Occupational and Environmental Medicine, 2002, 59, 634-639.	1.3	118
154	Raynaud's phenomenon, vibration induced white finger, and difficulties in hearing. Occupational and Environmental Medicine, 2002, 59, 640-642.	1.3	34
155	A STUDY OF THE DYNAMIC RESPONSE OF THE HUMAN BODY TO VERTICAL WHOLE-BODY VIBRATION. Doboku Gakkai Ronbunshu, 2002, 2002, 185-201.	0.2	0
156	Non-Linear Characteristics in the Dynamic Responses of Seated Subjects Exposed to Vertical Whole-Body Vibration. Journal of Biomechanical Engineering, 2002, 124, 527-532.	0.6	77
157	Effect of phase on discomfort caused by vertical whole-body vibration and shock—Experimental investigation. Journal of the Acoustical Society of America, 2002, 111, 1280-1288.	0.5	5
158	EFFECT OF PHASE ON HUMAN RESPONSES TO VERTICAL WHOLE-BODY VIBRATION AND SHOCK—ANALYTICAL INVESTIGATION. Journal of Sound and Vibration, 2002, 250, 813-834.	2.1	9
159	SECOND INTERNATIONAL CONFERENCE ON WHOLE-BODY VIBRATION INJURIES. Journal of Sound and Vibration, 2002, 253, 1-2.	2.1	5
160	EFFECT OF MUSCLE TENSION ON NON-LINEARITIES IN THE APPARENT MASSES OF SEATED SUBJECTS EXPOSED TO VERTICAL WHOLE-BODY VIBRATION. Journal of Sound and Vibration, 2002, 253, 77-92.	2.1	59
161	EFFECTS OF POSTURE AND VIBRATION MAGNITUDE ON APPARENT MASS AND PELVIS ROTATION DURING EXPOSURE TO WHOLE-BODY VERTICAL VIBRATION. Journal of Sound and Vibration, 2002, 253, 93-107.	2.1	71
162	EVALUATION OF WHOLE-BODY VIBRATION IN VEHICLES. Journal of Sound and Vibration, 2002, 253, 195-213.	2.1	196

#	Article	IF	CITATIONS
163	EFFECT OF SEATING ON EXPOSURES TO WHOLE-BODY VIBRATION IN VEHICLES. Journal of Sound and Vibration, 2002, 253, 215-241.	2.1	114
164	EVALUATING THE VIBRATION ISOLATION OF SOFT SEAT CUSHIONS USING AN ACTIVE ANTHROPODYNAMIC DUMMY. Journal of Sound and Vibration, 2002, 253, 295-311.	2.1	35
165	The clinical grading of Raynaud's phenomenon and vibration-induced white finger: relationship between finger blanching and difficulties in using the upper limb. International Archives of Occupational and Environmental Health, 2002, 75, 29-36.	1.1	16
166	Normative data for vascular and neurological tests of the hand-arm vibration syndrome. International Archives of Occupational and Environmental Health, 2002, 75, 43-54.	1.1	35
167	Dependence of vibrotactile thresholds on the psychophysical measurement method. International Archives of Occupational and Environmental Health, 2002, 75, 78-84.	1.1	28
168	A comparison of vibrotactile thresholds obtained using different diagnostic equipment: the effect of contact conditions. International Archives of Occupational and Environmental Health, 2002, 75, 85-89.	1.1	15
169	Effect of frequency and direction of horizontal oscillation on motion sickness. Aviation, Space, and Environmental Medicine, 2002, 73, 537-43.	0.6	9
170	Effect of magnitude and direction of horizontal oscillation on motion sickness. Aviation, Space, and Environmental Medicine, 2002, 73, 640-6.	0.6	2
171	Factors affecting static seat cushion comfort. Ergonomics, 2001, 44, 901-921.	1.1	115
172	Modelling the response of the spinal system to whole-body vibration and repeated shock. Clinical Biomechanics, 2001, 16, S3-S7.	0.5	20
173	Modelling the dynamic mechanisms associated with the principal resonance of the seated human body. Clinical Biomechanics, 2001, 16, S31-S44.	0.5	98
174	The validation of biodynamic models. Clinical Biomechanics, 2001, 16, S81-S92.	0.5	49
175	Interpretation of the finger skin temperature response to cold provocation. International Archives of Occupational and Environmental Health, 2001, 74, 325-335.	1.1	21
176	Risk of hand-arm vibration syndrome according to occupation and sources of exposure to hand-transmitted vibration: A national survey. American Journal of Industrial Medicine, 2001, 39, 389-396.	1.0	35
177	Raynaud's phenomenon in workers exposed to vibration. Occupational and Environmental Medicine, 2001, 58, 279-280.	1.3	6
178	Correlation Between Heart Rate and the Severity of Motion Sickness Caused by Optokinetic Stimulation. Journal of Psychophysiology, 2001, 15, 35-42.	0.3	79
179	Response of finger circulation to energy equivalent combinations of magnitude and duration of vibration. Occupational and Environmental Medicine, 2001, 58, 185-193.	1.3	28
180	The prevalence of sensorineural symptoms attributable to hand-transmitted vibration in Great Britain: a national postal survey. American Journal of Industrial Medicine, 2000, 38, 99-107.	1.0	18

#	Article	IF	CITATIONS
181	EFFECT OF PHASE, FREQUENCY, MAGNITUDE AND POSTURE ON DISCOMFORT ASSOCIATED WITH DIFFERENTIAL VERTICAL VIBRATION AT THE SEAT AND FEET. Journal of Sound and Vibration, 2000, 229, 273-286.	2.1	31
182	TRANSMISSION OF YAW SEAT VIBRATION TO THE HEAD. Journal of Sound and Vibration, 2000, 229, 1077-1095.	2.1	19
183	COMPARISON OF BIODYNAMIC RESPONSES IN STANDING AND SEATED HUMAN BODIES. Journal of Sound and Vibration, 2000, 238, 691-704.	2.1	48
184	Difference thresholds for automobile seat vibration. Applied Ergonomics, 2000, 31, 255-261.	1.7	45
185	Non-linearities in apparent mass and transmissibility during exposure to whole-body vertical vibration. Journal of Biomechanics, 2000, 33, 933-941.	0.9	159
186	Prevalence and pattern of occupational exposure to hand transmitted vibration in Great Britain: findings from a national survey. Occupational and Environmental Medicine, 2000, 57, 218-228.	1.3	55
187	Difference thresholds for intensity perception of whole-body vertical vibration: Effect of frequency and magnitude. Journal of the Acoustical Society of America, 2000, 107, 620-624.	0.5	46
188	Acute vascular responses to the frequency of vibration transmitted to the hand. Occupational and Environmental Medicine, 2000, 57, 422-430.	1.3	82
189	Prevalence and pattern of occupational exposure to whole body vibration in Great Britain: findings from a national survey. Occupational and Environmental Medicine, 2000, 57, 229-236.	1.3	64
190	Validity of self reported occupational exposures to hand transmitted and whole body vibration. Occupational and Environmental Medicine, 2000, 57, 237-241.	1.3	70
191	Effects of a target movement direction cue on head-tracking performance. Ergonomics, 2000, 43, 360-376.	1.1	16
192	Quantitative prediction of overall seat discomfort. Ergonomics, 2000, 43, 791-806.	1.1	58
193	Qualitative models of seat discomfort including static and dynamic factors. Ergonomics, 2000, 43, 771-790.	1.1	95
194	Motion sickness in public road transport: the effect of driver, route and vehicle. Ergonomics, 1999, 42, 1646-1664.	1.1	95
195	Motion sickness in public road transport: The relative importance of motion, vision and individual differences. British Journal of Psychology, 1999, 90, 519-530.	1.2	66
196	Thermal thresholds, vibrotactile thresholds and finger systolic blood pressures in dockyard workers exposed to hand-transmitted vibration. International Archives of Occupational and Environmental Health, 1999, 72, 377-386.	1.1	31
197	Magnitude of acute exposures to vibration and finger circulation. Scandinavian Journal of Work, Environment and Health, 1999, 25, 278-284.	1.7	42
198	Duration of acute exposures to vibration and finger circulation. Scandinavian Journal of Work, Environment and Health, 1998, 24, 130-137.	1.7	31

#	Article	IF	CITATIONS
199	Evaluating the motions of a semi-submersible platform with respect to human response. Applied Ergonomics, 1997, 28, 193-201.	1.7	5
200	Resonance behaviour of the seated human body and effects of posture. Journal of Biomechanics, 1997, 31, 143-149.	0.9	155
201	TOWARDS THE STANDARDIZATION OF A TESTING METHOD FOR THE END-STOP IMPACTS OF SUSPENSION SEATS. Journal of Sound and Vibration, 1996, 192, 307-319.	2.1	19
202	A data correction method for surface measurement of vibration on the human body. Journal of Biomechanics, 1995, 28, 885-890.	0.9	67
203	Effects of 1â€Hz and 2â€Hz transient vertical vibration on discomfort. Journal of the Acoustical Society of America, 1995, 98, 2157-2164.	0.5	11
204	Vibrotactile Temporary Threshold Shifts Induced by Hand-transmitted Vibration during Underwater Work Industrial Health, 1995, 33, 89-99.	0.4	4
205	Effects of horizontal whole-body vibration on reading. Applied Ergonomics, 1994, 25, 165-169.	1.7	41
206	The Transmission Of Translational Floor Vibration To The Heads Of Standing Subjects. Journal of Sound and Vibration, 1993, 160, 503-521.	2.1	46
207	Effects of duration and vibration on performance of a continuous manual control task. Ergonomics, 1993, 36, 645-659.	1.1	2
208	Compensating lags in head-coupled displays using head position prediction and image deflection. Journal of Aircraft, 1992, 29, 1064-1068.	1.7	41
209	Evidence of impaired learning during whole-body vibration. Journal of Sound and Vibration, 1992, 152, 219-225.	2.1	25
210	The annoyance caused by simultaneous noise and vibration from railways. Journal of the Acoustical Society of America, 1991, 89, 2317-2323.	0.5	51
211	Subjective reaction to vertical mechanical shocks of various waveforms. Journal of Sound and Vibration, 1991, 147, 395-408.	2.1	29
212	Effects of vertical vibration on passenger activities: writing and drinking. Ergonomics, 1991, 34, 1313-1332.	1.1	81
213	Measurement and evaluation of whole-body vibration at work. International Journal of Industrial Ergonomics, 1990, 6, 45-54.	1.5	8
214	The relative importance of noise and vibration from railways. Applied Ergonomics, 1990, 21, 129-134.	1.7	45
215	Subjective response to combined noise and vibration: summation and interaction effects. Journal of Sound and Vibration, 1990, 143, 443-454.	2.1	60
216	The apparent mass of the seated human body in the fore-and-aft and lateral directions. Journal of Sound and Vibration, 1990, 139, 299-306.	2.1	90

#	Article	IF	CITATIONS
217	Review of the effects of translational whole-body vibration on continuous manual control performance. Journal of Sound and Vibration, 1989, 133, 55-115.	2.1	62
218	The apparent mass of the seated human body: Vertical vibration. Journal of Biomechanics, 1989, 22, 81-94.	0.9	249
219	Whole-body vibration perception thresholds. Journal of Sound and Vibration, 1988, 121, 237-258.	2.1	80
220	Human response to simulated intermittent railway-induced building vibration. Journal of Sound and Vibration, 1988, 120, 413-420.	2.1	25
221	The transmission of translational seat vibration to the head—I. Vertical seat vibration. Journal of Biomechanics, 1988, 21, 191-197.	0.9	134
222	The transmission of translational seat vibration to the head—II. Horizontal seat vibration. Journal of Biomechanics, 1988, 21, 199-206.	0.9	87
223	The frequency dependence of subjective reaction to vertical and horizontal wholeâ€body vibration at low magnitudes. Journal of the Acoustical Society of America, 1988, 83, 1406-1413.	0.5	35
224	Motion sickness and motion characteristics of vessels at sea. Ergonomics, 1988, 31, 1373-1394.	1.1	69
225	Prediction of the incidence of motion sickness from the magnitude, frequency, and duration of vertical oscillation. Journal of the Acoustical Society of America, 1987, 82, 957-966.	0.5	109
226	A Review and Investigation of Aiming and Tracking Performance with Head-Mounted Sights. IEEE Transactions on Systems, Man, and Cybernetics, 1987, 17, 210-221.	0.9	17
227	Predicting the subjective response to nonsteady vibration based on the summation of subjective magnitude. Journal of the Acoustical Society of America, 1984, 76, 1080-1089.	0.5	12
228	Vibration and comfort IV. Application of experimental results. Ergonomics, 1982, 25, 721-739.	1.1	53
229	Predicting the effects of vertical vibration frequency, combinations of frequencies and viewing distance on the reading of numeric displays. Journal of Sound and Vibration, 1980, 70, 355-377.	2.1	27
230	Predicting the effects of vibration frequency and axis, and seating conditions on the reading of numeric displays. Ergonomics, 1980, 23, 485-499.	1.1	35
231	Time dependency of wholeâ€body vibration discomfort. Journal of the Acoustical Society of America, 1980, 68, 1522-1523.	0.5	20
232	Discomfort produced by impulsive wholeâ€body vibration. Journal of the Acoustical Society of America, 1980, 68, 1277-1284.	0.5	67
233	Six Axis Vehicle Vibration and its Effects on Comfort. Ergonomics, 1979, 22, 211-225.	1.1	21
234	Mechanisms of the effects of vibration frequency, level and duration on continuous manual control performance. Ergonomics, 1979, 22, 855-889.	1.1	11

#	Article	IF	CITATIONS
235	The effect of the position of the axis of rotation on the discomfort caused by whole-body roll and pitch vibrations of seated persons. Journal of Sound and Vibration, 1978, 58, 127-141.	2.1	26
236	A review of the effects of vibration on visual acuity and continuous manual control, part I: Visual acuity. Journal of Sound and Vibration, 1978, 56, 383-413.	2.1	37
237	A review of the effects of vibration on visual acuity and continuous manual control, part II: Continuous manual control. Journal of Sound and Vibration, 1978, 56, 415-457.	2.1	46
238	Individual variability and its effect on subjective and biodynamic response to whole-body vibration. Journal of Sound and Vibration, 1978, 58, 239-250.	2.1	51
239	The evaluation of vehicle vibration and seats. Applied Ergonomics, 1978, 9, 15-21.	1.7	71
240	The effects of vibration frequency and direction on the location of areas of discomfort caused by whole-body vibration. Applied Ergonomics, 1978, 9, 231-239.	1.7	38
241	The Effect of Rotational Vibration In Roll and Pitch Axes on the Discomfort of Seated Subjects. Ergonomics, 1978, 21, 615-625.	1.1	15
242	Predicting the Effects of Dual-Frequency Vertical Vibration on Continuous Manual Control Performance. Ergonomics, 1978, 21, 637-650.	1.1	14
243	Assessing the discomfort of dual-axis whole-body vibration. Journal of Sound and Vibration, 1977, 54, 107-116.	2.1	33
244	Eye Motion during Whole-Body Vertical Vibration. Human Factors, 1976, 18, 601-606.	2.1	26
245	Duration of whole-body vibration exposure its effect on comfort. Journal of Sound and Vibration, 1976, 48, 333-339.	2.1	31
246	Subjective equivalence of sinusoidal and random wholeâ€body vibration. Journal of the Acoustical Society of America, 1976, 60, 1140-1145.	0.5	35
247	A study of the subjective equivalence of noise and whole-body vibration. Journal of Sound and Vibration, 1975, 42, 453-461.	2.1	24
248	Human response to transportation noise and vibration. Journal of Sound and Vibration, 1973, 28, 375-401.	2.1	9
249	Measuring Vibration on Soft Seats. , 0, , .		16
250	Evaluation of Vibration with Respect to Human Response. , 0, , .		36
251	Effects of Vibration on People. , 0, , 343-353.		4
252	The Transmission of Vibration through Gloves to the Hand and to the Fingers: Effects of Material Dynamic Stiffness. Applied Mechanics and Materials, 0, 564, 149-154.	0.2	8